1
|
Namakka M, Rahman MR, Bin Mohamad Said KA, Muhammad A. Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Adv 2024; 14:30411-30439. [PMID: 39318464 PMCID: PMC11420651 DOI: 10.1039/d4ra03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The growing threat of environmental pollution to global environmental health necessitates a focus on the search for sustainable wastewater remediation materials coupled with innovative remediation strategies. Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron (ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as a powerful tool for environmental remediation. This analysis contributes to the ongoing search of effective solutions for environmental remediation. Synthesis techniques are analysed based on their efficacy, scalability, and environmental impact, providing insights into existing methodologies, current challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical properties and multifunctional engineering applications, including their role in wastewater and soil remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial applications of these materials are also discussed, accenting the importance of understanding the synthesis methods, materials' applications and their impacts on humans and the environment. The review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
Collapse
Affiliation(s)
- Murtala Namakka
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
- Ahmadu Bello University Zaria Kaduna state Nigeria
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Khairul Anwar Bin Mohamad Said
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Adamu Muhammad
- Nigerian National Petroleum Corporation Limited, NNPCl Nigeria
| |
Collapse
|
2
|
Zhang K, Yang Q, Jin Y, He P, Li Q, Chen P, Zhu J, Gan M. Catalytic activation of peroxydisulfate by secondary mineral derived self-modified iron-based composite for florfenicol degradation: Performance and mechanism. CHEMOSPHERE 2023; 313:137616. [PMID: 36563721 DOI: 10.1016/j.chemosphere.2022.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The advanced oxidation processes (AOPs) driven by iron-based materials are the highly efficient technology for refractory organic pollutants treatment. In this work, self-modified iron-based catalysts were prepared using secondary mineral as the precursor by one-step pyrolysis process without additional dopants. The prepared catalysts exhibited excellent performance in catalytic degradation of florfenicol (FF), especially C-AJ, which was derived from ammoniojarosite [(NH4, H3O)Fe3(OH)6(SO4)2], activated PDS to degrade 93% FF with initial concentration of 50 mg/L. Quenching tests and electron paramagnetic resonance (ESR) studies showed that SO4•-, •OH, and •O2- were the main reactive species for FF degradation and their contribution degree was SO4•- > •OH > •O2-. The Fe0 and the cycle of Fe(II)/Fe(III) both contributed to the PDS activation, and the reduction of Fe(III) to Fe(II) was accelerated by S2- on the catalyst surface. In addition, Fe3O4 on the C-AJ indirectly catalyzes PDS by promoting electron transfer. The effects of catalyst dosage, PDS concentration, pH, inorganic anions, and real aqueous matrices on FF degradation, TOC analysis, and cycling test were investigated. The results showed that iron-based catalysts have superior environmental durability due to their excellent catalytic properties in the real aqueous matrices with common inorganic anions and pH 3-9 and its steady catalytic capacity with multiple cycles. Overall, this study sheds new light on the rational design of self-modified iron-based composite and develops low-cost technology toward remediation of FF-contaminated wastewater.
Collapse
Affiliation(s)
- Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Quanliu Yang
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Yuwen Jin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Qiongyao Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Pan Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Fast degradation of florfenicol in SiC-Fe0 Fenton-like process: The overlooked role of atomic H* in peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Liu X, Shao P, Gao S, Bai Z, Tian J. Benzoquinone-assisted heterogeneous activation of PMS on Fe 3S 4 via formation of active complexes to mediate electron transfer towards enhanced bisphenol A degradation. WATER RESEARCH 2022; 226:119218. [PMID: 36240709 DOI: 10.1016/j.watres.2022.119218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Benzoquinone (BQ) is of great significance for enhancement of contaminants degradation in the homogeneous oxidation system of peroxymonosulfate (PMS). However, the role of BQ in the heterogeneous activation of PMS for contaminants oxidation is still not clear. Herein, this work reported that the addition of BQ into the Fe3S4/PMS system could effectively enhance the degradation and mineralization of bisphenol A (BPA). Mechanistic study uncovered that the BQ and PMS would form active complexes (BQ-PMS*) on the surface of Fe3S4 and the excited BQ-PMS* can oxidize the BPA. To be specific, the electron of BPA was extracted by BQ-PMS* and then transfer to the surface of Fe3S4. The surface electron can induce the change of valence state of S and Fe elements, which can trigger the degradation of BPA and inhibit the decomposition of BQ itself. To the best of our knowledge, it is the first time to unveil the positive role of BQ in the heterogeneous activation of PMS, which may shed new light on the establishment of high-efficient PMS-based oxidation technology for remediation of organic pollutant.
Collapse
Affiliation(s)
- Xiwen Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhaoyu Bai
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
5
|
Zhao Y, Wang H, Ji J, Li X, Yuan X, Duan A, Guan X, Jiang L, Li Y. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese -containing catalysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. J Colloid Interface Sci 2022; 626:564-580. [DOI: 10.1016/j.jcis.2022.06.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023]
|