1
|
Jeevanandam J, Gonçalves M, Castro R, Gallo J, Bañobre-López M, Rodrigues J. Stabilization of metal-doped magnesium oxide nanoparticles with PAMAM dendrimers to improve alpha-amylase enzyme inhibition. Mater Today Bio 2025; 31:101520. [PMID: 39974818 PMCID: PMC11835657 DOI: 10.1016/j.mtbio.2025.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
The present study aimed to synthesize metal-doped magnesium oxide (MgO) nanoparticles to drastically reduce polydispersity and stabilize them with generation 5 of poly(amidoamine) (G5 PAMAM) dendrimers to assess their antidiabetic properties via controlled release. Zinc and silver metals were selected as dopants due to their ionic radius (0.74 Å and 1.16 Å, respectively) for MgO crystal defect reduction (ionic radii - 0.72 Å), allowing for the comparison of the dopants' effect on the nanoparticles' properties. Later, the resultant nanoparticles were formulated into G5 PAMAM dendrimers, and their amylase inhibition was evaluated and compared with that of non-formulated samples. The results showed that the addition of dopants led to smaller, more stable, and slightly monodispersed spherical, hexagonal, and elongated hexagonal/rod-shaped MgO nanoparticles. The smaller size (∼11-72 nm), surface charge (ca. 17-24 mV), crystallite size ranging from 9.07 nm (Zn-doped MgO) to 17.44 nm (Ag-doped MgO), and distinct shapes have led to enhanced stabilization via G5 dendrimer. Notably, unlike other shapes, spherical nanoparticles were highly stabilized by dendrimers because of the absence of edged atoms. Amylase inhibition assay revealed that dendrimer-stabilized zinc-doped MgO nanoparticles exhibited enhanced inhibitory activity (82.9 %) at 0 h, which decreased to 66.6 % after 24 h, indicating controlled nanoparticle release by the dendrimer. Therefore, this study confirmed the significant role of dendrimer-stabilized metal-doped MgO nanoparticles in enhancing their ability to inhibit enzymes in a controlled manner. These findings led to a novel mechanism that has not been proposed in previous studies.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Mara Gonçalves
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Rita Castro
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Juan Gallo
- Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
2
|
Zhu C, Diao Z, Yang Y, Liao J, Wang C, Li Y, Liang Z, Xu P, Liu X, Zhang Q, Gong L, Ma Q, Liang L, Lin Z. Recent advances and challenges in metal-based antimicrobial materials: a review of strategies to combat antibiotic resistance. J Nanobiotechnology 2025; 23:193. [PMID: 40059157 PMCID: PMC11892188 DOI: 10.1186/s12951-025-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Despite the availability of a series of classical antibiotic drugs, bacterial infections continue to represent a significant and urgent threat to global human health. The emergence of drug-resistant bacteria and the slow pace of antibiotic development have rendered current treatment methods inadequate in meeting the clinical demands of bacterial infections. Consequently, there is an increasingly urgent and vital need for the development of safe, efficient, and alternative novel antimicrobial agents in the medical and healthcare field. Over the past five years, there has been a notable expansion in the field of nanomedicine with regard to the prevention and control of infectious diseases. The objective of this article is to provide a comprehensive review of the latest research developments in the field of metal nanomaterials for medical antimicrobial therapy. We begin by delineating the gravity of the bacterial infection crisis, subsequently undertaking a comprehensive examination of the potential mechanisms through which nanoparticles may combat bacterial infections and the specific applications of these nanomaterials in the treatment of diverse infectious diseases. In conclusion, we eagerly anticipate the future development directions of metal nanomaterials in the field of antimicrobial therapy. We believe that with continuous technological advancements and innovations, this field will make even more outstanding contributions to safeguarding human health and well-being.
Collapse
Affiliation(s)
- Chuanda Zhu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenli Diao
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100043, China
| | - Yuanyuan Yang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Liao
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Wang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanglonghao Li
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichao Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengcheng Xu
- School of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xinyu Liu
- Beijing Life Science Academy, Beijing, 102200, China
| | - Qiang Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Qiang Ma
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan City, 063210, Hebei Province, China.
| | - Ling Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Zhiqiang Lin
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
3
|
Panchal P, Rauwel P, Sharma S, Nehra SP, Estephan E, Praakle K, Rauwel E. Ocimum tenuiflorum leaf-mediated graphitic carbon nitride and ZnO/GCN nanohybrid: a sustainable approach for environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9945-9965. [PMID: 40164905 DOI: 10.1007/s11356-025-36299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Water contamination is a real concern, and safe water demand increases with the growing world population. The development of eco-friendly and cost-effective technologies that can clean water is necessary. This study investigates the bio-synthesis of pure graphitic carbon nitride nanoparticles (GCN-NPs), zinc oxide nanoparticles (ZnO-NPs), and ZnO-doped graphitic carbon nitride nanohybrids (ZnO/GCN-NHs) using Ocimum tenuiflorum (OT) leaf extract, with a focus on their potential applications in wastewater treatment, cytotoxicity assessment, and antibacterial activity. GCN synthesis using plant extract was never reported in previous studies. Under direct solar light photocatalytic performance of the synthesized NPs and NHs was tested on the degradation of methylene orange (MO) dye and compared. Among the samples, the ZnO/GCN-NHs (10 mg/100 mL) exhibits good photocatalytic activity, achieving up to 47.56% degradation in 150 min of MO dye. The cytotoxicity of the bio-synthesized NPs and NHs 50 µg/mL concentration was assessed against human dental pulp stem cells and these were found to be non-toxic, indicating their potential for biomedical applications. The antimicrobial properties were also assessed using well diffusion and disc diffusion tests against four bacterial strains, i.e., two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Staphylococcus aureus and Streptococcus dysgalactiae). The tests demonstrate significant antibacterial activity with an excellent inhibition radius against Escherichia coli 17.5 ± 1 mm, Pseudomonas aeruginosa 15.04 ± 1 mm, Staphylococcus aureus 27.5 ± 1 mm, and Streptococcus dysgalactiae 25 ± 1 mm. The enhanced photocatalytic and antimicrobial properties of the ZnO/GCN-NHs are hypothesized to be due to the increased production of reactive oxygen species (ROS) through the combination of ZnO-NPs with biosynthesized GCN.
Collapse
Affiliation(s)
- Priyanka Panchal
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | - Protima Rauwel
- Department of Aeronautical Engineering, Estonian Aviation Academy, 61707, Tartu, Estonia
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat, India
| | - Elias Estephan
- Laboratoire Bioingénierieet Nanoscience (LBN), University of Montpellier, Montpellier, France
- Faculty of Engineering, Sagesse University, Furn El Chebbak, Baabda, Lebanon
| | - Kristi Praakle
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Erwan Rauwel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
4
|
Li X, Pu J, Zu Y, He Y, Zhan F, Li X, Zhao J. Equal volume impregnation-air calcination synthesis of lithium-doped MgO nanoplates for enhanced antibacterial performance. RSC Adv 2025; 15:5639-5647. [PMID: 39974314 PMCID: PMC11836643 DOI: 10.1039/d4ra07138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Magnesium oxide nanomaterials (nano-MgO) have many advantages, such as environmentally benign, high thermal stability, no need of illumination, broad-spectrum antibacterial activity and more. However, its low activity has restricted the application in environmental purification and antibacterial disinfection. Herein, the equal volume impregnation-air calcination method was first used in the synthesis of nano-MgO and a series of nano-MgO with varying amounts of Li doping were prepared to enhance their antibacterial properties. Li doping leads to the distortion of MgO lattice structure and the presence of oxygen vacancies, enhancing oxygen absorption and alkalinity. This enhancement effectively promotes the formation of reactive oxygen species (ROS) and maintains its high chemical reactivity. The Li doped nano-MgO at 100 μg mL-1 showed a significant improvement in antibacterial activity, achieving the antibacterial ratio of 99.6% against Escherichia coli (E. coli). Moreover, the contribution of alkalinity, ROS, physical morphology effect, and dissolved ions (Mg2+ and Li+) to the antibacterial ability was further discussed. Especially, the results of dialysis tube test indirectly indicated that ROS played the crucial role in enhancing the antibacterial performance of nano-MgO. This study lays an essential foundation for further investigation into the antibacterial performance and mechanism of nano-MgO.
Collapse
Affiliation(s)
- Xiaoyi Li
- College of Resources and Environmental Science, Yunnan Agricultural University Kunming 650201 China
| | - Junmei Pu
- College of Resources and Environmental Science, Yunnan Agricultural University Kunming 650201 China
| | - Yanqun Zu
- College of Resources and Environmental Science, Yunnan Agricultural University Kunming 650201 China
| | - Yongmei He
- College of Resources and Environmental Science, Yunnan Agricultural University Kunming 650201 China
| | - Fangdong Zhan
- College of Resources and Environmental Science, Yunnan Agricultural University Kunming 650201 China
| | - Xi Li
- College of Resources and Environmental Science, Yunnan Agricultural University Kunming 650201 China
| | - Jiao Zhao
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| |
Collapse
|
5
|
Singh AK, Agrahari S, Gautam RK, Tiwari I. A highly efficient NiCo 2O 4 decorated g-C 3N 4 nanocomposite for screen-printed carbon electrode based electrochemical sensing and adsorptive removal of fast green dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67339-67354. [PMID: 37837595 DOI: 10.1007/s11356-023-30373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Herein, we demonstrate the preparation and application of NiCo2O4 decorated over a g-C3N4-based novel nanocomposite (NiCo2O4@g-C3N4). The prepared material was well characterized through several physicochemical techniques, including FT-IR, XRD, SEM, and TEM. The electrochemical characterizations via electrochemical impedance spectroscopy show the low electron transfer resistance of NiCo2O4@g-C3N4 owing to the successful incorporation of NiCo2O4 nanoparticles on the sheets of g-C3N4. NiCo2O4@g-C3N4 nanocomposite was employed in the fabrication of a screen-printed carbon electrode-based innovative electrochemical sensing platform and the adsorptive removal of a food dye, i.e., fast green FCF dye (FGD). The electrochemical oxidation of FGD at the developed NiCo2O4@g-C3N4 nanocomposite modified screen-printed carbon electrode (NiCo2O4@g-C3N4/SPCE) was observed at an oxidation potential of 0.65 V. A wide dual calibration range for electrochemical determination of FGD was successfully established at the prepared sensing platform, showing an excellent LOD of 0.13 µM and sensitivity of 0.6912 µA.µM-1.cm-2 through differential pulse voltammetry. Further, adsorbent dose, pH, contact time, and temperature were optimized to study the adsorption phenomena. The adsorption thermodynamics, isotherm, and kinetics were also investigated for efficient removal of FGD at NiCo2O4@g-C3N4-based adsorbents. The adsorption phenomenon of FGD on NiCo2O4@g-C3N4 was best fitted (R2 = 0.99) with the Langmuir and Henry model, and the corresponding value of Langmuir adsorption efficiency (qm) was 3.72 mg/g for the removal of FGD. The reaction kinetics for adsorption phenomenon were observed to be pseudo-second order. The sensitive analysis of FGD in a real sample was also studied.
Collapse
Affiliation(s)
- Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Arif N, Ma Y, Zafar MN, Humayun M, Bououdina M, Zhang SY, Zhang Q, Yang X, Liang H, Zeng YJ. Design and Fabrication of Biomass Derived Black Carbon Modified g-C 3N 4/FeIn 2S 4 Heterojunction as Highly Efficient Photocatalyst for Wastewater Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308908. [PMID: 38105418 DOI: 10.1002/smll.202308908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The environmental deterioration caused by dye wastewater discharge has received considerable attention in recent decades. One of the most promising approaches to addressing the aforementioned environmental issue is the development of photocatalysts with high solar energy consumption efficiency for the treatment of dye-contaminated water. In this study, a novel low-cost π-π biomass-derived black carbon modified g-C3N4 coupled FeIn2S4 composite (i.e., FeInS/BC-CN) photocatalyst is successfully designed and fabricated that reveals significantly improved photocatalytic performance for the degradation of Eosin Yellow (EY) dye in aqueous solution. Under dark and subsequent visible light irradiation, the amount optimized composite reveals 99% removal performance for EY dye, almost three-fold compared to that of the pristine FeInS and BC-CN counterparts. Further, it is confirmed by means of the electron spin resonance spectrometry, quenching experiments, and density functional theory (DFT) calculations, that the hydroxyl radicals (•OH) and superoxide radicals (•O2 -) are the dominant oxidation species involved in the degradation process of EY dye. In addition, a systematic photocatalytic degradation route is proposed based on the resultant degradation intermediates detectedduring liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. This work provides an innovative idea for the development of advanced photocatalysts to mitigate water pollution.
Collapse
Affiliation(s)
- Nayab Arif
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yunfei Ma
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh 11586, Saudi Arabia
| | - Su-Yun Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaopeng Yang
- School of Material Science and Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Huawei Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
7
|
Bachvarova-Nedelcheva A, Iordanova R, Kaneva N. The Solvent Role for the Decomposition of Paracetamol in Distilled and Drinking Water by Pure and Ag-Modified TiO 2 Sol-Gel Powders. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1791. [PMID: 38673148 PMCID: PMC11051041 DOI: 10.3390/ma17081791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
In this study, pure TiO2 gels were synthesized by applying the sol-gel method, using Ti(IV) butoxide with the addition of two different solvents, namely ethylene glycol (EG) and isopropanol (isop), with only air moisture present. It was established using XRD that the gel prepared with the addition of EG was amorphous even at 400 °C, while the other gel was amorphous up to 300 °C. It was found that TiO2 (anatase) had a dominant crystalline phase during heating to 600 °C, while at 700 °C, TiO2 (rutile) appeared. The as-obtained powdered materials were annealed at 500 °C and subsequently underwent photocatalytic tests with paracetamol. Additionally, the TiO2 samples were modified with Ag+ co-catalysts (10-2 M), using photofixation by UV illumination. The photocatalytic activity of the Ag-modified powders was also tested in the photodegradation of a commonly used paracetamol in aqueous solution under UV light illumination. The obtained data exhibited that the annealed samples had better photocatalytic efficiency and decomposed paracetamol faster in comparison to the non-annealed sol-gel powders. The highest degradation efficiency was observed for the TBT/isop/Ag material, with degradation efficiencies average values of 65.59% and 75.61% paracetamol achieved after the third cycle of photocatalytic treatment. The co-catalytically modified powders had higher photocatalytic efficiency in comparison to the pure nanosized powders. Moreover, the sol-gel powders of TBT/EG, TBT/EG/Ag (10-2 M), TBT/isop, and TBT/isop/Ag (10-2 M) demonstrated the ability to retain their photocatalytic activity even after three cycles of use, suggesting that they could find practical use in the treatment of pharmaceutical wastewater. The observed photocatalytic efficiency and positive impact of silver make the prepared powders a desirable choice for pharmaceutical drug degradation, helping to promote environmentally friendly and effective wastewater treatment technology.
Collapse
Affiliation(s)
- Albena Bachvarova-Nedelcheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 11, 1113 Sofia, Bulgaria;
| | - Reni Iordanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 11, 1113 Sofia, Bulgaria;
| | - Nina Kaneva
- Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
8
|
Taheri E, Fatehizadeh A, Hadi S, Amin MM, Khiadani M, Ghasemian M, Rafiei N, Rezakazemi M, Aminabhavi TM. Mesoporous bimetallic S-doped nanoparticles prepared via hydrothermal method for enhanced photodegradation of 4-chlorophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119460. [PMID: 37939471 DOI: 10.1016/j.jenvman.2023.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Magnesium oxides (MgO) have gained shown significant promise for a variety of applications, which can be modified by ions doping. In this study, bimetallic Ag-doped S-MgO nanoparticles were prepared by hydrothermal method and used for photocatalytic degradation of 4-chlorophenl (4-CP). EDX suggested the presence of no impurities, which mainly contained Mg, Ag, and S elements, suggesting that S and Ag were incorporated into the lattice of MgO as a result of successful doping. Estimated bandgap of Ag-doped S-MgO nanoparticles was 3.7 eV, lower than MgO (7.8 eV), but useful to improve optical characteristics and photocatalytic efficiency to degrade 4-CP up to a maximum of 99.60 ± 0.50%. The synergetic parameter during photocatalysis of 4-CP was 6.91, confirming the degradation of 4-CP. Quenching experiments proved the presence of hydroxyl radicals (•OH) and singlet dioxygen (1O2) that were critical in 4-CP degradation. The kinetics rate constant was increased by 24.8% from 0.086 ± 0.004 to 0.108 ± 0.005 min-1 by the addition of sulfate in the reaction medium. The work proposes a new synthetic method for preparing catalysts that are capable of producing in-situ •OH radicals and 1O2 to decompose the organic contaminants.
Collapse
Affiliation(s)
- Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sousan Hadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Mohammad Ghasemian
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nasim Rafiei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| |
Collapse
|
9
|
Rao VS, Sharma R, Paul DR, Almáši M, Sharma A, Kumar S, Nehra SP. Architecting the Z-scheme heterojunction of Gd 2O 3/g-C 3N 4 nanocomposites for enhanced visible-light-induced photoactivity towards organic pollutants degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98773-98786. [PMID: 36702986 DOI: 10.1007/s11356-023-25360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
A basic calcination process in one step was employed to create g-C3N4 photocatalytic composites modified by Gd2O3 nanoparticles. SEM (scanning electron microscopy), FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction), EIS (electrochemical impedance spectroscopy), PL (photoluminescence studies) as well as TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and CV (cyclic voltammetry) were employed to explain the structural traits, optical properties, and morphological features of the processed photocatalyst. The findings show that Gd2O3 (Gd) does not affect the sample's crystalline structure but rather increases g-C3N4 surface area by spreading it superficially. Furthermore, Gd can redshift the light absorption peak, reduce the energy gap, and improve the efficiency with which photogenerated holes and electrons are removed in g-C3N4. The surface morphology of g-C3N4, in particular, could be significantly enhanced. We similarly employed three distinct photocatalytic complexes of Gd2O3 and g-C3N4 in 1:1, 2:1, and 3:1 proportions to degrade methylene blue (MB). After 100 min in visible light (400-800 nm), the photodegradation rate of composites is 58.8% for 1:1 (GG1), 94.5% for 2:1 (GG2), and 92% for 3:1 (GG3). In addition to the MB dye, the photocatalytic activity of synthesized materials was also studied for methyl orange. The result shows phenomenal degradation values, i.e.; for GG1 86%, GG2 96%, and for GG3 84.6%. The narrow band gap that separates the photogenerated electron and hole enhances g-C3N4 ability to degrade photo-catalytically. From the result, we concluded that the photocurrent and cyclic photocatalytic degradation of methylene blue shows that a composition of 2:1 Gd2O3/g-C3N4 has high photocatalytic stability.
Collapse
Affiliation(s)
- Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
- Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 041 54, Kosice, Slovak Republic
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology (SoET), Central University of Haryana, Mahendragarh, 123031, India
| | - Suresh Kumar
- Department of Electronic Science, Kurukshetra University, Kurukshetra, 1336119, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India.
| |
Collapse
|
10
|
Paul DR, Sharma R, Rao VS, Panchal P, Gautam S, Sharma A, Nehra SP. Mg/Li@GCN as highly active visible light responding 2D photocatalyst for wastewater remediation application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98540-98547. [PMID: 35666418 DOI: 10.1007/s11356-022-21203-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, a highly visible light responding 2D photocatalytic material has been prepared and analysed for its potential for photodegradation of organic pollutants. The pristine GCN has been co-doped with Mg/Li using the facile synthesis route. The prepared photocatalytic materials were then analysed using characterisation techniques like X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflectance spectra (DRS) and photoluminescence spectroscopy (PL) analysis. The prepared samples were analysed for photocatalytic degradation analysis towards methylene blue dye. The apparent rate constant value increased up to 5.4 times in the case of the GCNML (0.5,2) sample in comparison to GCNP. In addition, the GCNML (0.5,2) sample was also analysed for degradation of crystal violet (CV) (97% in 80 min), rose bengal (RB) (84% in 120 min) and methyl orange (MO) (45% in 120 min) dyes. The result obtained from the study confirmed that GCNML (0.5,2) can act as a potential photocatalyst for wastewater remediation application.
Collapse
Affiliation(s)
- Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Shubham Gautam
- Materials Research Center, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology (SoET), Central University of Haryana, Mahendragarh, 123031, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| |
Collapse
|
11
|
Azeez L, Lateef A, Olabode O. An overview of biogenic metallic nanoparticles for water treatment and purification: the state of the art. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:851-873. [PMID: 37651325 PMCID: wst_2023_255 DOI: 10.2166/wst.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The environment is fundamental to human existence, and protecting it from dangerous contaminants should be a top priority for all stakeholders. Reducing garbage output has helped, but as the world's population grows, more waste will be generated. Tons of waste inadvertently and advertently received by environmental matrixes adversely affect the sustainable environment. The pollution caused by these activities affects the environment and human health. Conventional remediation processes ranging from chemical, physical, and biological procedures use macroaggregated materials and microorganisms to degrade or remove pollutants. Undesirable limitations of expensiveness, disposal challenges, maintenance, and formation of secondary contaminants abound. Additionally, multiple stages of treatments to remove different contaminants are time-consuming. The need to avoid these limitations and shift towards sustainable approaches brought up nanotechnology options. Currently, nanomaterials are being used for environmental rejuvenation that involves the total degradation of pollutants without secondary pollution. As nanoparticles are primed with vast and modifiable reactive sites for adsorption, photocatalysis, and disinfection, they are more useful in remediating pollutants. Review articles on metallic nanoparticles usually focus on chemically synthesized ones, with a particular focus on their adsorption capacity and toxicities. Therefore, this review evaluates the current status of biogenic metallic nanoparticles for water treatment and purification.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria E-mail:
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO+), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Olalekan Olabode
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria; Department of Chemistry, Mississippi State University, MS 39762-9573, USA
| |
Collapse
|
12
|
Dang K, Kumar N, Srivastava VC, Park J, Naushad M. Efficient Propylene Carbonate Synthesis from Urea and Propylene Glycol over Calcium Oxide-Magnesium Oxide Catalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:735. [PMID: 36676471 PMCID: PMC9865221 DOI: 10.3390/ma16020735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A series of calcium oxide-magnesium oxide (CaO-MgO) catalysts were prepared under the effects of different precipitating agents and using varied Mg/Ca ratios. The physiochemical characteristics of the prepared catalysts were analyzed using XRD, FE-SEM, BET, FTIR, and TG/DTA techniques. Quantification of basic active sites present on the surface of the CaO-MgO catalysts was carried out using the Hammett indicator method. The as-prepared mixed oxide samples were tested for propylene carbonate (PC) synthesis through the alcoholysis of urea with propylene glycol (PG). The effects of the catalyst composition, catalyst dose, reaction temperature, and contact time on the PC yield and selectivity were investigated. The maximum PC yield of 96%, with high PC selectivity of 99% and a urea conversion rate of 96%, was attained at 160 °C using CaO-MgO catalysts prepared using a Mg/Ca ratio of 1 and Na2CO3 as a precipitating agent. The best-performing catalysts also exhibited good reusability without any significant loss in PC selectivity. It is expected that the present study will provide useful information on the suitability of different precipitating agents with respect to the catalytic properties of the oxides of Ca and Mg and their application in the synthesis of organic carbonates.
Collapse
Affiliation(s)
- Kavisha Dang
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Navneet Kumar
- Department of Electronics Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Jinsub Park
- Department of Electronics Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Alghuwainem YAA, Gouda M, Khalaf MM, Heakal FET, Albalwi HA, Elmushyakhi A, El-Lateef HMA. Highlighting the Compositional Changes of the Sm 2O 3/MgO-Containing Cellulose Acetate Films for Wound Dressings. Polymers (Basel) 2022; 14:polym14224964. [PMID: 36433092 PMCID: PMC9697631 DOI: 10.3390/polym14224964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The development of wound dressing materials with appropriate specifications is still a challenge to overcome the current limitations of conventional medical bandages. In this regard, simple and fast methods are highly recommended, such as film casting. In addition, deliverable nanoparticles that can act to accelerate wound integration, such as samarium oxide (Sm2O3) and magnesium oxide (MgO), might represent a potential design with a novel compositional combination. In the present research, the casted film of cellulose acetate (CA) was mixed with different ratios of metal oxides, such as samarium oxide (Sm2O3) and magnesium oxide (MgO). The tests used for the film examination were X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM graphs of CA films represent the surface morphology of Sm2O3@CA, MgO@CA, and Sm2O3/MgO/GO@CA. It was found that the scaffolds' surface contained a high porosity ratio with diameters of 1.5-5 µm. On the other hand, the measurement of contact angle exhibits a variable trend starting from 27° to 29° for pristine CA and Sm2O3/MgO/GO@CA. The cell viability test exhibits a noticeable increase in cell growth with a decrease in the concentration. In addition, the IC50 was determined at 6 mg/mL, while the concentration of scaffolds of 20 mg/mL caused cellular growth to be around 106%.
Collapse
Affiliation(s)
- Yousef A. A. Alghuwainem
- Department of Veterinary Public Health and Care, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.G.); or (H.M.A.E.-L.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | | | - Hanan A. Albalwi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Abraham Elmushyakhi
- Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar 73213, Saudi Arabia
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.G.); or (H.M.A.E.-L.)
| |
Collapse
|
14
|
Rattan Paul D, Sharma R, Sharma A, Nehra SP. Li doped graphitic carbon nitride based solar light responding photocatalyst for organic water pollutants degradation. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Li T, Zhao Y, Chen M. Study on Enhancing the Corrosion Resistance and Photo-Thermal Antibacterial Properties of the Micro-Arc Oxidation Coating Fabricated on Medical Magnesium Alloy. Int J Mol Sci 2022; 23:ijms231810708. [PMID: 36142610 PMCID: PMC9503942 DOI: 10.3390/ijms231810708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Photo-thermal antibacterial properties have attracted much attention in the biomedical field because of their higher antibacterial efficiency. Through fabricating micro-arc oxidation coatings with different treating current densities set on a Mg-Zn-Ca alloy, the present study tried to systematically investigate and optimize the corrosion resistance and photo-thermal antibacterial properties of MAO coatings. The results indicated that different current densities had great influence on the corrosion resistance and photo-thermal property of the MAO coatings, and a current density at 30 A·dm–2 exhibited the best corrosion resistance, light absorption capacity at 808 nm, and photo-thermal capability, simultaneously with good antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coil). This photo-thermal property of MAO coatings was probably related to the effect of current density on MgO content in the coating that could promote the separation of photo-generated electron carriers and hinder the recombination of photo-generated electron carriers and holes.
Collapse
Affiliation(s)
- Tianlu Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun Zhao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Display Materials and Photoelectric Device, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
- National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China
- Correspondence: (Y.Z.); (M.C.)
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Display Materials and Photoelectric Device, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
- National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China
- Correspondence: (Y.Z.); (M.C.)
| |
Collapse
|