1
|
Ma D, Tang J, He G, Pan S. Investigation of the Photocatalytic Performance, Mechanism, and Degradation Pathways of Rhodamine B with Bi 2O 3 Microrods under Visible-Light Irradiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:957. [PMID: 38399207 PMCID: PMC10890279 DOI: 10.3390/ma17040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
In the present work, the photodegradation of Rhodamine B with different pH values by using Bi2O3 microrods under visible-light irradiation was studied in terms of the dye degradation efficiency, active species, degradation mechanism, and degradation pathway. X-ray diffractometry, polarized optical microscopy, scanning electron microscopy, fluorescence spectrophotometry, diffuse reflectance spectra, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, UV-visible spectrophotometry, total organic carbon, and liquid chromatography-mass spectroscopy analysis techniques were used to analyze the crystal structure, morphology, surface structures, band gap values, catalytic performance, and mechanistic pathway. The photoluminescence spectra and diffuse reflectance spectrum (the band gap values of the Bi2O3 microrods are 2.79 eV) reveals that the absorption spectrum extended to the visible region, which resulted in a high separation and low recombination rate of electron-hole pairs. The photodegradation results of Bi2O3 clearly indicated that Rhodamine B dye had removal efficiencies of about 97.2%, 90.6%, and 50.2% within 120 min at the pH values of 3.0, 5.0, and 7.0, respectively. In addition, the mineralization of RhB was evaluated by measuring the effect of Bi2O3 on chemical oxygen demand and total organic carbon at the pH value of 3.0. At the same time, quenching experiments were carried out to understand the core reaction species involved in the photodegradation of Rhodamine B solution at different pH values. The results of X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffractometer analysis of pre- and post-Bi2O3 degradation showed that BiOCl was formed on the surface of Bi2O3, and a BiOCl/Bi2O3 heterojunction was formed after acid photocatalytic degradation. Furthermore, the catalytic degradation of active substances and the possible mechanism of the photocatalytic degradation of Rhodamine B over Bi2O3 at different pH values were analyzed based on the results of X-ray diffractometry, radical capture, Fourier-transform infrared spectroscopy, total organic carbon analysis, and X-ray photoelectron spectroscopy. The degradation intermediates of Rhodamine B with the Bi2O3 photocatalyst in visible light were also identified with the assistance of liquid chromatography-mass spectroscopy.
Collapse
Affiliation(s)
- Dechong Ma
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| | - Jiawei Tang
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Guowen He
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| | - Sai Pan
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| |
Collapse
|
2
|
Mehralipour J, Bagheri S, Gholami M. Synthesis and characterization of rGO/Fe 0/Fe 3O 4/TiO 2 nanocomposite and application of photocatalytic process in the decomposition of penicillin G from aqueous. Heliyon 2023; 9:e18172. [PMID: 37519670 PMCID: PMC10372246 DOI: 10.1016/j.heliyon.2023.e18172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
In this study, we synthesized rGO/Fe0/Fe3O4/TiO2 nanocomposite according to Hummer's, and straightforward sol-gel method. The FESEM, EDX, TEM, FT-IR, XRD, BET, UV spectra, and VSM analysis were applied to determine the catalyst properties. Optimization of influence parameters on photocatalytic process performance to penicillin G degradation in aqueous media. pH (4-8), nanocomposite dose (10-20 mg/L), reaction time (30-60 min), and penicillin G concentration (50-100 mg/L) were optimized via central composite design. In the optimum condition of PCP, supplementary studies were done. As a result of the analysis, the nanocomposite was well synthesized and displayed superior photocatalytic properties for degrading organic pollutants. In addition to being magnetically separable, the synthesized rGO/Fe0/Fe3O4/TiO2 nanocomposite exhibits high recyclability up to 5 times. The quadratic model of optimization is based on the adjusted R2(0.99), and predicated R2(0.97) suggested. According to the analysis of variance test, the model was significant (F-Value = 162.95, P-Value = 0.0001). Photocatalytic process is most efficiently decomposed at pH = 6.5, catalyst dose = 18.5 mg/L, reaction time = 59.1 min, and penicillin G concentration = 52 mg/L (efficiency = 96%). The chemical oxygen demand and total organic carbon decrease were 78, and 65%. The photolysis and adsorption mechanism as a single mechanism had lower performance in penicillin G degradation. Benzocaine had the greatest effect on reducing the efficiency of the process as a radical scavenger. The °OH, h+, and O2●- were the main reactive oxidant species in penicillin G removal. Phenoxyacetaldehyde, Acetanilide, Diacetamate, Phenylalanylglycine, N-Acetyl-l-phenylalanine, Diformyldapsone, and Succisulfone were the main intermediates in penicillin G degradation. The results indicated the photocatalytic process with rGO/Fe0/Fe3O4/TiO2 nanocomposite on a laboratory scale has good efficiency in removing penicillin G antibiotic. The application of real media requires further studies.
Collapse
Affiliation(s)
- Jamal Mehralipour
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Susan Bagheri
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Umejuru EC, Mashifana T, Kandjou V, Amani-Beni M, Sadeghifar H, Fayazi M, Karimi-Maleh H, Sithole T. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches. ENVIRONMENTAL RESEARCH 2023; 231:116073. [PMID: 37164282 DOI: 10.1016/j.envres.2023.116073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.
Collapse
Affiliation(s)
- Emmanuel Christopher Umejuru
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Vepika Kandjou
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Materials and Metallurgical Engineering (CMME), Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Majid Amani-Beni
- School of Architecture, Southwest Jiaotong University, 611756, Chengdu, China
| | - Hasan Sadeghifar
- R&D Laboratory, Hollingsworth & Vose (H&V) Company, West Groton, MA, 01452, USA
| | - Mahsa Fayazi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
4
|
Xu Y, Gao L, Yang J, Yang Q, Peng W, Ding Z. Effective and Efficient Porous CeO 2 Adsorbent for Acid Orange 7 Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2650. [PMID: 37048943 PMCID: PMC10095680 DOI: 10.3390/ma16072650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A porous CeO2 was synthesized following the addition of guanidine carbonate to a Ce3+ aqueous solution, the subsequent addition of hydrogen peroxide and a final hydrothermal treatment. The optimal experimental parameters for the synthesis of porous CeO2, including the amounts of guanidine carbonate and hydrogen peroxide and the hydrothermal conditions, were determined by taking the adsorption efficiency of acid orange 7 (AO7) dye as the evaluation. A template-free hydrothermal strategy could avoid the use of soft or hard templates and the subsequent tedious procedures of eliminating templates, which aligned with the goals of energy conservation and emission reduction. Moreover, both the guanidine carbonate and hydrogen peroxide used in this work were accessible and eco-friendly raw materials. The porous CeO2 possessed rapid adsorption capacities for AO7 dye. When the initial concentration of AO7 was less than 130 mg/L, removal efficiencies greater than 90.0% were obtained, achieving a maximum value of 97.5% at [AO7] = 100 mg/L and [CeO2] = 2.0 g/L in the first 10 min of contact. Moreover, the adsorption-desorption equilibrium between the porous CeO2 adsorbent and the AO7 molecule was basically established within the first 30 min. The saturated adsorption amount of AO7 dye was 90.3 mg/g based on a Langmuir linear fitting of the experimental data. Moreover, the porous CeO2 could be recycled using a NaOH aqueous solution, and the adsorption efficiency of AO7 dye still remained above 92.5% after five cycles. This study provided an alternative porous adsorbent for the purification of dye wastewater, and a template-free hydrothermal strategy was developed to enable the design of CeO2-based catalysts or catalyst carriers.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyuan Yang
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Qingxiu Yang
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Wanxin Peng
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Zhao Ding
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|