1
|
Gao C, Long J, Yue Y, Li B, Huang Y, Wang Y, Zhang J, Zhang L, Qian G. Degradation and regeneration inhibition of PCDD/Fs in incineration fly ash by low-temperature thermal technology. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135315. [PMID: 39096638 DOI: 10.1016/j.jhazmat.2024.135315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Low-temperature thermal degradation of PCDD/Fs for incineration fly ash (IFA), as a novel and emerging technology approach, offers promising features of high degradation efficiency and low energy consumption, presenting enormous potential for application in IFA resource utilization processes. This review summarizes the concentrations, congener distributions, and heterogeneity characteristics of PCDD/Fs in IFA from municipal, medical, and hazardous waste incineration. A comparative analysis of five PCDD/Fs degradation technologies is conducted regarding their characteristics, industrial potential, and applicability. From the perspective of low-temperature degradation mechanisms, pathways to enhance PCDD/Fs degradation efficiency and inhibit their regeneration reactions are discussed in detail. Finally, the challenges to achieve low-temperature degradation of PCDD/Fs for IFA with high-efficiency are prospected. This review seeks to explore new opportunities for the detoxification and resource utilization of IFA by implementing more efficient and viable low-temperature degradation technologies.
Collapse
Affiliation(s)
- Chenqi Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jisheng Long
- Shanghai SUS Environment Co., LTD., Shanghai 201703, China
| | - Yang Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bin Li
- Shanghai SUS Environment Co., LTD., Shanghai 201703, China
| | - Yiru Huang
- Shanghai SUS Environment Co., LTD., Shanghai 201703, China
| | - Yao Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingen Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Lee WH, Kim JO. Optimization of turbidity removal and floc formation for ballasted flocculation using magnetite-based agents by response surface methodology. CHEMOSPHERE 2024; 363:142932. [PMID: 39067827 DOI: 10.1016/j.chemosphere.2024.142932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In this study, a static mixer was used as an alternative to the existing flash mixing method for ballasted flocculation to assess the turbidity removal and ballasted floc formation characteristics. Synthetic magnetite exhibits excellent properties, such as high specific gravity, hydrophobicity, and wear resistance, making it a suitable ballast agent (BA). The experimental design was optimized using the response surface methodology. To evaluate turbidity removal, a model based on polyaluminum chloride dosage, BA surface charge, and pH was developed. To assess the ballasted floc characteristics, the BA dosage, BA size, and G value of the static mixer were used. During ballasted flocculation, the impact of the zeta potential of the BA was minimal. Consequently, bonding primarily resulted from the viscosity of the floc caused by physical collisions rather than electrostatic forces stemming from the BA charge. The findings of this study demonstrated promising outcomes, including potential energy savings and process streamlining, by identifying crucial design elements for implementing a static mixer in the ballasted flocculation process.
Collapse
Affiliation(s)
- Won-Hee Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Mu Y, Jiao Y, Wang X, Williams PT. Effect of support structure of Pt/silicaite-1 catalyst on non-thermal plasma (NTP) assisted chlorobenzene degradation and PCDD/Fs formation. CHEMOSPHERE 2024; 359:142294. [PMID: 38734247 DOI: 10.1016/j.chemosphere.2024.142294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Development of efficient catalysts for non-thermal plasma (NTP) assisted catalysis to mitigate the formation of harmful by-products is a significant challenge in the degradation of chlorinated volatile organic compounds (Cl-VOCs). In this study, catalytically active Pt nanoparticles supported on non-porous SiO2 and silicalite-1 zeolites (S1) with different pore structure were comparatively investigated for catalytic chlorobenzene degradation under NTP condition. It was shown that the pore structure could significantly impact the metal size and metal dispersion rate. Pt supported on modified S1 hierarchical meso-micro-porous silicalite-1 (Pt/D-S1) exhibited the smallest particle size (∼6.19 nm) and the highest dispersion rate (∼1.87). Additionally, Pt/D-S1 demonstrated superior catalytic performance compared to the other catalysts, achieving the highest chlorobenzene conversion and COx selectivity at about 80% and 75%, respectively. Furthermore, the pore structure also affected the formation of by-products according to the findings from GC-MS analysis. Pt/SiO2 generated a total of 18 different species of organic compounds, whereas only 12 species of organic by-products were identified in the Pt/D-S1 system (e.g. polychlorinated compounds like 3,4 dichlorophenol were exclusively identified in Pt/SiO2). Moreover, dioxin-like polychlorinated biphenyl and other chlorinated organic compounds, which have potential to form highly toxic dioxins, were detected in the catalysts. HRGC-HRMS confirmed and quantified the 17 different dioxin/furans formed on Pt/SiO2 (25,100 ng TEQ kg-1), Pt/S1 (515 ng TEQ kg-1) and Pt/D-S1 (367 ng TEQ kg-1). The correlation between synthesis-structure-performance in this study provides insights into the design of catalysts for deep oxidation of Cl-VOCs in NTP system.
Collapse
Affiliation(s)
- Yibing Mu
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, China
| | - Xinrui Wang
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Paul T Williams
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Mehrabi F, Ghaedi M, Dil EA, Tayebi L. Deep eutectic solvent-based ferrofluid for highly efficient preconcentration and determination of metronidazole by vortex-assisted liquid-phase microextraction under experimental design optimization. Talanta 2024; 272:125705. [PMID: 38364554 DOI: 10.1016/j.talanta.2024.125705] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/18/2024]
Abstract
To determine metronidazole in water samples, we developed an environmentally friendly, efficient, and straightforward ferrofluid-based liquid-liquid microextraction sample pretreatment technique. It is coupled with a high-performance liquid chromatography-ultraviolet analytical technique known for its sensitivity, speed, and precision. The magnetic separation of metronidazole-containing ferrofluid from the matrix was effortlessly achieved through the application of an external magnetic field, eliminating the need for centrifugation. Response surface optimization was employed to systematically determine the key experimental parameters influencing extraction efficiency, including pH, NaCl concentration, ferrofluid volume, and vortex duration. With a low detection limit (0.116 ng mL-1), a broad linear range between 0.5 and 700 ng mL-1 was achieved at optimal conditions. Additionally, acceptable spiking recoveries (94.3-97.3 %) and RSD values (≤3.7 %) for intra- and inter-day precision were attained in water samples. In conclusion, the effectiveness of the vortex and ferrofluid combination, along with the convenience of collection and elimination of the need for centrifugation, bestows a highly valuable technique for determining metronidazole in water samples.
Collapse
Affiliation(s)
- Fatemeh Mehrabi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| |
Collapse
|
5
|
Gonzalez-Casamachin D, Qin T, Huang WM, Rangarajan S, Zhang L, Baltrusaitis J. Actively Learned Optimal Sustainable Operation of Plasma-Catalyzed Methane Bireforming on La 0.7Ce 0.3NiO 3 Perovskite Catalyst. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:610-622. [PMID: 38213547 PMCID: PMC10777443 DOI: 10.1021/acssuschemeng.3c06929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Plasma-catalytic bireforming of methane was studied and actively optimized using a La0.7Ce0.3NiO3 perovskite catalyst via experimentation in tandem with response surface modeling. Plasma power, inlet flow rate, temperature, CO2/CH4 ratio, and steam concentration were tuned to maximize a variety of process- and sustainability-based metrics. Analysis of the optimal conditions (with respect to different metrics) with and without the catalyst reveals that dry reforming is driven largely via noncatalytic reactions, while steam reforming and water gas shift reactions require the catalyst. The experimental outcome demonstrated that under optimum reaction conditions using the La0.7Ce0.3NiO3 catalyst it is possible to minimize global warming potential (GWP), in terms of inferred CO2 footprint normalized to hydrogen throughput, resulting in maximizing hydrogen yield through steam reforming (and water gas shift reactions) at an SEI of ≈12 eV/molecule. Furthermore, the highest CH4 conversion reached was 87% while the catalyst showed good activity stability in DBD plasma experiments.The actively learned iterative optimization procedure developed in this work allows for a direct juxtaposition of thermal (heat needed to make steam and heat the plasma reactor) and electrical (power requirement for plasma generation) carbon footprints in a highly nonlinear multivariate process. Furthermore, the corresponding GWP was calculated using a conventional electricity mix, wind electricity, and solar electricity, allowing a direct sustainability assessment in catalyst-assisted plasma conversion of carbonaceous feedstock to H2 and CO.
Collapse
Affiliation(s)
| | - Tian Qin
- Department
of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wei-Min Huang
- Department
of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Srinivas Rangarajan
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lihua Zhang
- Brookhaven
National Laboratory Center for Functional Nanomaterials, Bldg. 735, Upton, New York 11973-5000, United States
| | - Jonas Baltrusaitis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
6
|
Yu X, Li S, Jiao Y, Ren Y, Kou Y, Dang X. Impact of the geometric structure parameter on the performance of dielectric barrier reactor for toluene removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:982-994. [PMID: 38030837 DOI: 10.1007/s11356-023-31238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The reasonable geometry design of non-thermal plasma (NTP) reactor is significant for its performance. However, optimizing the reactor structure has received insufficient attention in the studies on removing volatile organic compounds by NTP. Several dielectric barrier discharge (DBD) reactors with various barrier thicknesses and discharge gaps were designed, and their discharge characteristics and toluene degradation performance were explored comprehensively. The number and intensity of current pulses, discharge power, emission spectrum intensity and gas temperature of the DBD reactors increased as barrier thickness decreased. The toluene removal efficiency and mineralization rate increased from 23.2-87.1% and 5.3-27.9% to 81.7-100% and 15.9-51.3%, respectively, when the barrier thickness reduced from 3 to 1 mm. With the increase of discharge gap, the breakdown voltage, discharge power, gas temperature and residence time increased, while the discharge intensity decreased. The reactor with the smallest discharge gap (3.5 mm) exhibited the highest toluene removal efficiency (78.4-100%), mineralization rate (15.6-40.9%) and energy yield (8.4-18.7 g/kWh). Finally, the toluene degradation pathways were proposed based on the detected organic intermediates. The findings can provide critical guidance for designing and optimizing of DBD reactor structures.
Collapse
Affiliation(s)
- Xin Yu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 710055, Shaanxi Province, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
| | - Shijie Li
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 710055, Shaanxi Province, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
| | - Yang Jiao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 710055, Shaanxi Province, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
| | - Yitong Ren
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 710055, Shaanxi Province, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
| | - Yongkang Kou
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 710055, Shaanxi Province, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China
| | - Xiaoqing Dang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 710055, Shaanxi Province, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture & Technology, Yanta Road, No. 13, Xi'an, 71005, Shaanxi Province, China.
| |
Collapse
|
7
|
Wen N, Li M, Huo Y, Zhou Y, Jiang J, Ma Y, Gu Q, Xie J, He M. Homogeneous and heterogeneous atmospheric ozonolysis of chlorobenzene:Mechanism, kinetics and ecotoxicity assessment. CHEMOSPHERE 2023; 343:140303. [PMID: 37769920 DOI: 10.1016/j.chemosphere.2023.140303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The reactions between chlorobenzene(CB) and ozone have been studied comprehensively in this paper. Chlorobenzene is a commonly found chlorinated aromatic volatile organic compound(VOC), and its emission into the atmosphere can cause harm to the ecosystem and human health. The frequent occurrence of mineral particles from sandstorms exerts a significant influence on the atmospheric chemistry of the troposphere. Mineral particles are abundant in SiO2 and Al2O3 content. Therefore, we investigated the homogeneous and heterogeneous reaction processes of CB and ozone in the atmosphere by using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The atmospheric fate, reaction rate and toxicity evaluation of CB ozonation were studied in the gas-phase section. Toxicity evaluation results showed that ozonation of CB could effectively reduce its toxicity. For the heterogeneous process, we simulated three types of SiO2 clusters and nine types of (Al2O3)n clusters, and studied the configurations of CB adsorbed on the cluster surfaces. We found that adsorption of CB on the SiO2 clusters was achieved through hydrogen bonding, while adsorption of CB on the Al2O3 clusters was achieved through both hydrogen bonding and metal bonding. The energy for CB adsorption on the (Al2O3)n cluster surface was higher than that for the SixOy(OH)z cluster surface, and both types of clusters exhibited efficient adsorption of CB. As the SixOy(OH)z clusters grew larger, the rates for the reactions between O3 and CB increased. CB travelled long distances along the Al2O3 clusters, leading to an extended influence range.
Collapse
Affiliation(s)
- Nuan Wen
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
8
|
Zhang W, Xing Y, Hao L, Wang J, Cui Y, Yan X, Jia H, Su W. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. CHEMOSPHERE 2023; 340:139866. [PMID: 37633603 DOI: 10.1016/j.chemosphere.2023.139866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
In this paper, the degradation of o-DCB under different gas-phase parameter conditions was investigated using the SDBD-NTP system. The results showed that the increase in initial and oxygen concentrations had opposite effects on the degradation of o-DCB. Among them, the increase of oxygen concentration promoted the degradation of o-DCB. Relative humidity promoted and then inhibited the degradation of o-DCB. The highest degradation efficiency of o-DCB was achieved at RH = 15%, reaching 91% at 29W. In the study of by-products, it was found that O3 and NOx were the main inorganic by-products, and that different oxygen levels and relative humidity conditions had a large effect on the production of O3 and NOx. In all of them, the concentration of O3 decreased with the increase of input power. NOx increased with increasing oxygen concentration, but the increase in relative humidity inhibited the production of NO and N2O and promoted the conversion of NO2. A study of organic by-products revealed this. In the absence of oxygen, a higher number of benzene products appeared. Whereas, with the addition of oxygen, only in the by-products under conditions where no relative humidity was introduced, benzene ring products were predominantly present in the by-products. However, when RH was added, n-hexane was found to be present in the by-products. This may be because the introduction of OH• favors the destruction of the benzene ring. Finally, the possible reaction pathways and reaction mechanisms of o-DCB under different gas-phase parameters are given. It provides a reference for future related scientific research as well as scientific problems in practical applications.
Collapse
Affiliation(s)
- Wenbo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Liangyuan Hao
- Strategy Research Institute HBIS Group, HBIS Group Co., Ltd., Shijiazhuang, 050023, PR China
| | - Jiaqing Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yongkang Cui
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xue Yan
- Beijing OriginWater Technology Co., Ltd., Beijing, 100083, PR China
| | - Haoqi Jia
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China
| | - Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510530, PR China.
| |
Collapse
|
9
|
Duan X, Ning Z, Wang W, Li Y, Zhao X, Liu L, Li W, Chang L. Y-mediated optimization of 3DG-PbO 2 anode for electrochemical degradation of PFOS. BMC Chem 2023; 17:146. [PMID: 37891592 PMCID: PMC10612263 DOI: 10.1186/s13065-023-01057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In our previous study, the three-dimensional graphene-modified PbO2 (3DG-PbO2) anode was prepared for the effective degradation of perfluorooctanesulfonat (PFOS) by the electrochemical oxidation process. However, the mineralization efficiency of PFOS at the 3DG-PbO2 anode still needs to be further improved due to the recalcitrance of PFOS. Thus, in this study, the yttrium (Y) was doped into the 3DG-PbO2 film to further improve the electrochemical activity of the PbO2 anode. To optimize the doping amount of Y, three Y and 3DG codoped PbO2 anodes were fabricated with different Y3+ concentrations of 5, 15, and 30 mM in the electroplating solution, which were named Y/3DG-PbO2-5, Y/3DG-PbO2-15 and Y/3DG-PbO2-30, respectively. The results of morphological, structural, and electrochemical characterization revealed that doping Y into the 3DG-PbO2 anode further refined the β-PbO2 crystals, increased the oxygen evolution overpotential and active sites, and reduced the electron transfer resistance, resulting in a superior electrocatalytic activity. Among all the prepared anodes, the Y/3DG-PbO2-15 anode exhibited the best activity for electrochemical oxidation of PFOS. After 120 min of electrolysis, the TOC removal efficiency was 80.89% with Y/3DG-PbO2-15 anode, greatly higher than 69.13% with 3DG-PbO2 anode. In addition, the effect of operating parameters on PFOS removal was analyzed by response surface, and the obtained optimum values of current density, initial PFOS concentration, pH, and Na2SO4 concentration were 50 mA/cm2, 12.21 mg/L, 5.39, and 0.01 M, respectively. Under the optimal conditions, the PFOS removal efficiency reached up to 97.16% after 40 min of electrolysis. The results of the present study confirmed that the Y/3DG-PbO2 was a promising anode for electrocatalytic oxidation of persistent organic pollutants.
Collapse
Affiliation(s)
- Xiaoyue Duan
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Ziqi Ning
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Weiyi Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yitong Li
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Liyue Liu
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Wenqian Li
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| |
Collapse
|
10
|
Liu J, Dong Y, Kang Y, Kong Q, Wang K, Mao F, Bu Y, Zhou R, Zhang C, Wu H. Exploration for cobalt/nitrogen-doped catalyst to creatinine degradation via peroxymonosulfate activation: toxicity evaluation, statistical modeling, and mechanisms study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109110-109122. [PMID: 37770734 DOI: 10.1007/s11356-023-29990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Developing multifunctional catalysts applied in diversiform modes via advanced oxidation processes (AOPs) is a promising and attractive approach for organic pollution degradation. Herein, a novel hollow bamboo-like structural cobalt/nitrogen-doped carbonized material (CoC/N) was employed as a catalyst for AOPs, in which CoC/N was prepared in situ through calcining a Co-based coordination polymer. When CoC/N was utilized as a peroxymonosulfate (PMS) activator, the catalyst stood out prominent activities for effective CA oxidation. Furthermore, a five-level central composite rotatable design (CCRD) model describing CA decay as a function of PMS concentration, CoC/N dosage, and solution pH value was successfully constructed and engaged to explore the optimal operating conditions. Finally, the possible degradation mechanism of CA in CoC/N-PMS system was proposed by quantum chemistry calculation and LC/MS analysis. This work shed light on the structural morphology of the catalyst and its PMS synergy degradation pathway, which promotes its applications in miscellaneous pollutant degradation. A new Co/N-doped material was used to degrade unconventionality organic pollutant creatinine (CA) for the first time, in which the scientific approaches of five-level central composite rotatable design (CCRD) model, response surface methodology (RSM) and density function theory (DFT) were employed to evaluate the material performance and CA degradation pathway. The toxicity evaluation, statistical modeling and mechanisms study have been investigated meticulously.
Collapse
Affiliation(s)
- Jiadi Liu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yawen Dong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yu Kang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qian Kong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Feifei Mao
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuanqing Bu
- Research Center of Solid Waste Pollution Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China
| | - Rong Zhou
- Research Center of Solid Waste Pollution Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China
| | - Chunyong Zhang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
11
|
Mu Y, Williams PT. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review. CHEMOSPHERE 2022; 308:136481. [PMID: 36165927 DOI: 10.1016/j.chemosphere.2022.136481] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Most of the volatile organic compounds (VOCs) and especially the chlorinated volatile organic compounds (Cl-VOCs), are regarded as major pollutants due to their properties of volatility, diffusivity and toxicity which pose a significant threat to human health and the eco-environment. Catalytic degradation of VOCs and Cl-VOCs to harmless products is a promising approach to mitigate the issues caused by VOCs and Cl-VOCs. Non-thermal plasma (NTP) assisted catalysis is a promising technology for the efficient degradation of VOCs and Cl-VOCs with higher selectivity under relatively mild conditions compared with conventional thermal catalysis. This review summarises state-of-the-art research of the in plasma catalysis (IPC) of VOCs degradation from three major aspects including: (i) the design of catalysts, (ii) the strategies of deep catalytic degradation and by-products inhibition, and (iii) the fundamental research into mechanisms of NTP activated catalytic VOCs degradation. Particular attention is also given to Cl-VOCs due to their characteristic properties of higher stability and toxicity. The catalysts used for the degradation Cl-VOCs, chlorinated by-products formation and the degradation mechanism of Cl-VOCs are systematically reviewed in each chapter. Finally, a perspective on future challenges and opportunities in the development of NTP assisted VOCs catalytic degradation were discussed.
Collapse
Affiliation(s)
- Yibing Mu
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul T Williams
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|