1
|
Jiao H, Cui M, Yuan S, Dong B, Xu Z. Carbon nanomaterials for co-removal of antibiotics and heavy metals from water systems: An overview. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137566. [PMID: 39952121 DOI: 10.1016/j.jhazmat.2025.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Pollution resulting from the combination of antibiotics and heavy metals (HMs) poses a significant threat to human health and the natural environment. Adsorption is a promising technique for removing antibiotics and HMs owing to its low cost, simple procedures, and high adsorption capacity. In recent years, various novel carbon nanomaterials have been developed, demonstrating outstanding performance in simultaneously removing antibiotics and HMs. This work presents a comprehensive review of carbon nanomaterials (i.e., carbon nanotubes, graphene, resins, and other nanocomposites) for the co-removal of antibiotics and HMs in water systems. The mechanisms influencing the simultaneous removal of antibiotics and HMs include the bridging effect, electrostatic shielding, competition, and spatial site-blocking effects. These mechanisms can promote, inhibit, or have no impact on the adsorption capacity for antibiotics or HMs. Additionally, environmental factors such as pH, inorganic ions, natural organic matter, and microplastics affect the adsorption efficiency. This review also covers adsorbent regeneration and cost estimation. On the laboratory scale, the cost of the adsorption process primarily depends on the chemical and energy costs of adsorbent production. Our assessment highlights that the carbon-nanomaterial-mediated simultaneous removal of antibiotics and HMs warrants comprehensive consideration from both economic and environmental perspectives.
Collapse
Affiliation(s)
- Huiting Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mengke Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
2
|
Ouyang Y, Li M, Tang C, Song S, Wang H, Huang C, Zhong H, Zhu J, Ji X, Xu H, Chen Z, Liu Z. Low-coordinated Mn-N 2 sites in graphene oxide induce peroxydisulfate activation for tetracycline degradation: Process optimization and theoretical calculation. ENVIRONMENTAL RESEARCH 2024; 260:119621. [PMID: 39019142 DOI: 10.1016/j.envres.2024.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Atom-dispersed low-coordinated transition metal-Nx catalysts exhibit excellent efficiency in activating peroxydisulfate (PDS) for environmental remediation. However, their catalytic performance is limited due to metal-N coordination number and single-atom loading amount. In this study, low-coordinated nitrogen-doped graphene oxide (GO) confined single-atom Mn catalyst (Mn-SA/NGO) was synthesized by molten salt-assisted pyrolysis and coupled to PDS for degradation of tetracycline (TC) in water. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analysis showed the successful doping of single-atom Mn (weight percentage 1.6%) onto GO and the formation of low-coordinated Mn-N2 sites. The optimized parameters obtained by Box-Behnken Design achieved 100% TC removal in both prediction and experimental results. The Mn-SA/NGO + PDS system had strong anti-interference ability for TC removal in the presence of anions. Besides, Mn-SA/NGO possessed good reusability and stability. O2•-, •OH, and 1O2 were the main active species for TC degradation, and the TC mineralization reached 85.1%. Density functional theory (DFT) calculations confirmed that the introduction of single atoms Mn could effectively enhance adsorption and activation of PDS. The findings provide a reference for the synthesis of high-performance single-atom catalysts for effective removal of antibiotics.
Collapse
Affiliation(s)
- Yuan Ouyang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Meifang Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China.
| | - Chunfang Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China.
| | - Shiyu Song
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Hui Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Chenxi Huang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Haoxiang Zhong
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Jian Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Xiaodong Ji
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Hao Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Zhangkai Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
3
|
Sun L, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Recent advances in catalytic oxidation of VOCs by two-dimensional ultra-thin nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170748. [PMID: 38340848 DOI: 10.1016/j.scitotenv.2024.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.
Collapse
Affiliation(s)
- Long Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
4
|
Gupta A, Kumar S, Bajpai Y, Chaturvedi K, Johri P, Tiwari RK, Vivekanand V, Trivedi M. Pharmaceutically active micropollutants: origin, hazards and removal. Front Microbiol 2024; 15:1339469. [PMID: 38419628 PMCID: PMC10901114 DOI: 10.3389/fmicb.2024.1339469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Pharmaceuticals, recognized for their life-saving potential, have emerged as a concerning class of micropollutants in the environment. Even at minute concentrations, chronic exposure poses a significant threat to ecosystems. Various pharmaceutically active micropollutants (PhAMP), including antibiotics, analgesics, and hormones, have been detected in underground waters, surface waters, seawater, sewage treatment plants, soils, and activated sludges due to the absence of standardized regulations on pharmaceutical discharge. Prolonged exposureof hospital waste and sewage treatment facilities is linked to the presence of antibiotic-resistant bacteria. Conventional water treatment methods prove ineffective, prompting the use of alternative techniques like photolysis, reverse osmosis, UV-degradation, bio-degradation, and nano-filtration. However, commercial implementation faces challenges such as incomplete removal, toxic sludge generation, high costs, and the need for skilled personnel. Research gaps include the need to comprehensively identify and understand various types of pharmaceutically active micropollutants, investigate their long-term ecological impact, develop more sensitive monitoring techniques, and explore integrated treatment approaches. Additionally, there is a gap in understanding the socio-economic implications of pharmaceutical pollution and the efficacy of public awareness campaigns. Future research should delve into alternative strategies like phagotherapy, vaccines, and natural substance substitutes to address the escalating threat of pharmaceutical pollution.
Collapse
Affiliation(s)
- Anuradha Gupta
- Flavin Labs Private Limited, Lucknow, Uttar Pradesh, India
- J. Somaiya College of Science and Commerce, Mumbai, India
| | - Sandeep Kumar
- Flavin Labs Private Limited, Lucknow, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Yashi Bajpai
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Kavita Chaturvedi
- Flavin Labs Private Limited, Lucknow, Uttar Pradesh, India
- Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Parul Johri
- Department of Biotechnology, AITH, Kanpur, Uttar Pradesh, India
| | - Rajesh K. Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - V. Vivekanand
- Department of Biotechnology, MNIT, Jaipur, Rajasthan, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Yilmaz E, Altiparmak E, Dadaser-Celik F, Ates N. Impact of Natural Organic Matter Competition on the Adsorptive Removal of Acetochlor and Metolachlor from Low-Specific UV Absorbance Surface Waters. ACS OMEGA 2023; 8:31758-31771. [PMID: 37692210 PMCID: PMC10483658 DOI: 10.1021/acsomega.3c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Although activated carbon adsorption is a very promising process for the removal of organic compounds from surface waters, the removal performance for nonionic pesticides could be adversely affected by co-occurring natural organic matter. Natural organic matter can compete with pesticides during the adsorption process, and the size of natural organic matter affects the removal of pesticides, as low-molecular-weight organics directly compete for adsorbent sites with pesticides. This study aims to investigate the competitive impact of low-molecular-weight organics on the adsorptive removal of acetochlor and metolachlor by four commercial powdered activated carbons. The adsorption features of selected powdered activated carbons were evaluated in surface water samples collected from the influent stream of the filtration process having 2.75 mg/L organic matter and 0.87 L/mg-m specific UV absorbance. The adsorption kinetics and capacities were examined by employing pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models and modified Freundlich and Langmuir isotherm models to the experimental data. The competitive removal of acetochlor and metolachlor in the presence of natural organic matter was evaluated for varied powdered activated carbon dosages on the basis of UV and specific UV absorbance values of adsorbed organic matter. The adsorption data were well represented by the modified Freundlich isotherm, as well as pseudo-second-order kinetics. The maximum organic matter adsorption capacities of the modified Freundlich isotherm were observed to be 120.6 and 127.2 mg/g by Norit SX Ultra and 99.5 and 100.6 mg/g by AC Puriss for acetochlor- and metolachlor-containing water samples, respectively. Among the four powdered activated carbons, Norit SX Ultra and AC Puriss provided the highest natural organic matter removal performances with 76 and 72% and 71 and 65% for acetochlor- and metolachlor-containing samples, respectively. Similarly, Norit SX Ultra and AC Puriss were very effective for adsorbing aromatic organics with higher than 80% specific UV absorbance removal efficiency. Metolachlor was almost completely removed by higher than 98% by Norit SX Ultra, Norit SX F Cat, and AC Puriss, even at low adsorbent dosages. However, an adsorbent dose of 100 mg/L and above should be added for all powdered activated carbons, except for Norit SX F Cat, for achieving an acetochlor removal performance of higher than 98%. The competition between low-molecular-weight organics (low-specific UV absorbance) and acetochlor and metolachlor was more apparent at low adsorbent dosages (10-75 mg/L).
Collapse
Affiliation(s)
- Emine Yilmaz
- Graduate
School of Natural and Applied Sciences, Erciyes University, Kayseri 380320, Turkey
| | - Ezgi Altiparmak
- Graduate
School of Natural and Applied Sciences, Erciyes University, Kayseri 380320, Turkey
| | - Filiz Dadaser-Celik
- Department
of Environmental Engineering, Erciyes University, Kayseri 380320, Turkey
| | - Nuray Ates
- Department
of Environmental Engineering, Erciyes University, Kayseri 380320, Turkey
| |
Collapse
|
6
|
Li J, Liu X, Zhao G, Liu Z, Cai Y, Wang S, Shen C, Hu B, Wang X. Piezoelectric materials and techniques for environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161767. [PMID: 36702283 DOI: 10.1016/j.scitotenv.2023.161767] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
With the rapid development of industrialization and agriculture, a series of critical imminent environmental problems and water pollution have caught wide attention from the public and society. Piezoelectric catalysis technology with piezoelectric materials is a green and environmental method that can efficiently improve the separation of electron-hole pairs, then generating the active substances such as OH, H2O2 and O2-, which can degrade water pollutants. Therefore, we firstly surveyed the piezoelectric catalysis in piezoelectric materials and systematically concluded and emphasized the relationship between piezoelectric materials and the piezoelectric catalytic mechanism, the goal to elucidate the effect of polarization on piezoelectric catalytic performance and enhance piezoelectric catalytic performance. Subsequently, the applications of piezoelectric materials in water treatment and environmental pollutant remediation were discussed including degradation of organic pollutants, removal of heavy mental ions, radionuclides, bacteria disinfection and water splitting for H2 generation. Finally, the development prospects and future outlooks of piezoelectric catalysis were presented in detail.
Collapse
Affiliation(s)
- Juanlong Li
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Zhixin Liu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
7
|
Li J, Liu X, Zhao G, Liu Z, Cai Y, Wang S, Shen C, Hu B, Wang X. Piezoelectric materials and techniques for environmental pollution remediation. SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161767. [DOI: doi.org/10.1016/j.scitotenv.2023.161767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
8
|
Polo-Mendoza R, Navarro-Donado T, Ortega-Martinez D, Turbay E, Martinez-Arguelles G, Peñabaena-Niebles R. Properties and Characterization Techniques of Graphene Modified Asphalt Binders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:955. [PMID: 36903833 PMCID: PMC10004843 DOI: 10.3390/nano13050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Graphene is a carbon-based nanomaterial used in various industries to improve the performance of hundreds of materials. For instance, graphene-like materials have been employed as asphalt binder modifying agents in pavement engineering. In the literature, it has been reported that (in comparison to an unmodified binder) the Graphene Modified Asphalt Binders (GMABs) exhibit an enhanced performance grade, a lower thermal susceptibility, a higher fatigue life, and a decreased accumulation of permanent deformations. Nonetheless, although GMABs stand out significantly from traditional alternatives, there is still no consensus on their behavior regarding chemical, rheological, microstructural, morphological, thermogravimetric, and surface topography properties. Therefore, this research conducted a literature review on the properties and advanced characterization techniques of GMABs. Thus, the laboratory protocols covered by this manuscript are atomic force microscopy, differential scanning calorimetry, dynamic shear rheometer, elemental analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. Consequently, the main contribution of this investigation to the state-of-the-art is the identification of the prominent trends and gaps in the current state of knowledge.
Collapse
Affiliation(s)
| | - Tatiana Navarro-Donado
- Department of Civil & Environmental Engineering, Universidad del Norte, Barranquilla 081001, Colombia
| | - Daniela Ortega-Martinez
- Department of Civil & Environmental Engineering, Universidad del Norte, Barranquilla 081001, Colombia
- School of Civil and Environmental Engineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Emilio Turbay
- Department of Civil & Environmental Engineering, Universidad del Norte, Barranquilla 081001, Colombia
| | | | - Rita Peñabaena-Niebles
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081001, Colombia
| |
Collapse
|
9
|
Reduced Graphene Oxide-Zinc Sulfide Nanocomposite Decorated with Silver Nanoparticles for Wastewater Treatment by Adsorption, Photocatalysis and Antimicrobial Action. Molecules 2023; 28:molecules28030926. [PMID: 36770591 PMCID: PMC9920792 DOI: 10.3390/molecules28030926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Reduced graphene oxide nanosheets decorated with ZnS and ZnS-Ag nanoparticles are successfully prepared via a facile one-step chemical approach consisting of reducing the metal precursors on a rGO surface. Prepared rGO-ZnS nanocomposite is employed as an adsorbent material against two model dyes: malachite green (MG) and ethyl violet (EV). The adsorptive behavior of the nanocomposite was tuned by monitoring some parameters, such as the time of contact between the dye and the adsorbent, and the adsorbent dose. Experimental data were also simulated with kinetic models to evaluate the adsorption behavior, and the results confirmed that the adsorption of both dyes followed a pseudo 2nd order kinetic mode. Moreover, the adsorbent was also regenerated in a suitable media for both dyes (HCl for MG and ethanol for EV), without any significant loss in removal efficiency. Ag doped rGO-ZnS nanocomposite was also utilized as a photocatalyst for the degradation of the selected organic contaminant, resorcinol. The complete degradation of the phenolic compound was achieved after 60 min with 200 mg of rGO-ZnS-Ag nanocomposite under natural sunlight irradiation. The photocatalytic activity was studied considering some parameters, such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of resorcinol was carefully studied and found to follow a linear Langmuir-Hinshelwood model. An additional advantage of rGO-ZnS and rGO-ZnS-Ag nanocomposites was antibacterial activity against Gram-negative bacterium, E. coli, and the results confirmed the significant performance of the nanocomposites in destroying harmful pathogens.
Collapse
|
10
|
Yan Y, Ma X, Xia Y, Feng H, Liu S, He C, Ding Y. Mechanism of highly efficient electrochemical degradation of antibiotic sulfadiazine using a layer-by-layer GNPs/PbO 2 electrode. ENVIRONMENTAL RESEARCH 2023; 217:114778. [PMID: 36368374 DOI: 10.1016/j.envres.2022.114778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
A PbO2 electrode integrating electrocatalytic and adsorptive functions was successfully fabricated by embedding layer-by-layer graphene nanoplatelets (GNPs) into β-PbO2 active layer (GNPs/PbO2) and employed as anode for high-efficient removal of sulfadiazine (SDZ). In electrochemical degradation experiments, SDZ was quickly enriched on the surface of GNPs/PbO2 film via adsorption and then oxidized by ⋅OH in-site. In terms of the electrocatalytic performance and adsorption of electrode, the optimal electrodeposition time for each β-PbO2 outer layer was 4 min (GNPs/PbO2-4). Compared with conventional PbO2 electrode, the layer-by-layer GNPs resulted in the smaller crystal size and denser surface of PbO2 electrode, thus facilitating the generation of active oxygen species. At the same time, the specific surface area, oxygen evolution potential (OEP) of the anode were enhanced and the charge-transfer resistance was reduced. For GNPs/PbO2-4 anode, the optimal conditions of electrochemical oxidation of SDZ were identified as initial pH 9, 50 mg/L of SDZ and 20 mA/cm2 of current density using response surface methodology (RSM), 98.15% of SDZ could be removed in this case. The contribution of radical oxidation and non-radical oxidation to SDZ removal was about 79% and 21%, respectively. Moreover, the reaction pathways of SDZ on the GNPs/PbO2-4 electrode involving hydroxylation, radical reaction and ring cleavage were speculated. Finally, the continuous SDZ degradation and accelerated service lifetime test suggested that the GNPs/PbO2-4 electrode was shown to be stable and repeatable, and the Pb2+ concentration was measured to ensure the safety of the treated solution. Consequently, the above findings provide an innovative way to design and prepare an effective and stable PbO2 electrode for electrochemical degradation of antibiotic wastewater.
Collapse
Affiliation(s)
- Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shengjue Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Cong He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|