1
|
Elreedy A, Ali M, Moriwaki Y, Chijiwa N, Fujii M. Incorporating concrete waste as additive in acidic fermentation-A novel approach for enhanced biohydrogen production and concrete mass reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122944. [PMID: 39418715 DOI: 10.1016/j.jenvman.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/07/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Acidic fermentation (AF) of organic waste/wastewater generates valuable byproducts, including hydrogen, volatile fatty acids, and ethanol; however, its sensitivity to pH drops limits the stability and efficiency of the process. A reversal process, the acidic chemical treatment of concrete waste (CW) to recycle its aggregates, generates calcium hydroxide, which can serve as buffering agent. Meanwhile, integrating both processes can introduce a sustainable win-win approach, which is the aim of this study. To assess this approach, a series of batch AF experiments were conducted at 50 °C and pH 5.5, using glucose as the substrate. Cementitious specimen (1.5 × 1.5 × 0.8 cm) was supplemented to each 200 mL-fermenter. Unamended fermenters, with and without additional NaHCO3-buffering, were used as controls to compare with the amended ones. Introducing cementitious specimens to AF increased H2-production by 2-fold and 1.7-fold compared to controls with and without NaHCO3-addition, respectively, after three consecutive feed-cycles. The surface analysis of incorporated specimen confirmed the Ca, Al, Mg, and Si leaching. The AF efficiency and resulting cementitious mass reduction were further assessed at different organic loads and specimens' volume, surface area, and porosity (by changing water-to-cement [W/C] ratio). Increasing the organic load from 10 to 20 g-glucose/L resulted in lower H2-production, higher specimen mass reduction (up to ∼32%), and higher Ca2+ release (up to 2 g/L); however, no significant effect was observed when using specimens with higher W/C ratio or surface area. Moreover, the presence of cementitious specimens significantly influenced the microbial composition, leading to notable developments in the abundant genera Thermoanaerobacterium and Bacillus. This study presents a novel approach to sustainably enhancing AF process using CW as both an additive and a treatable substance, with reusable aggregates as a byproduct. It provides valuable insights for optimizing the process and guiding future practical applications. This includes considering various concrete compositions, adjusting organic load conditions, and evaluating long-term stability in larger-scale systems.
Collapse
Affiliation(s)
- Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, 21073, Germany; Sanitary Engineering Department, Alexandria University, Alexandria, 21544, Egypt
| | - Manal Ali
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Civil Engineering Department, Aswan University, Aswan, 81511, Egypt.
| | - Yoshiyuki Moriwaki
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Nobuhiro Chijiwa
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
2
|
Hangri S, Derbal K, Policastro G, Panico A, Contestabile P, Pontoni L, Race M, Fabbricino M. Combining pretreatments and co-fermentation as successful approach to improve biohydrogen production from dairy cow manure. ENVIRONMENTAL RESEARCH 2024; 246:118118. [PMID: 38199469 DOI: 10.1016/j.envres.2024.118118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The present paper is focused on enhancing the production of biohydrogen (bioH2) from dairy cow manure (DCM) through dark fermentation (DF). Two enhancement production strategies have been tested: i) the combination of H2O2 with sonification as pretreatment and ii) the co-fermentation with cheese whey as co-substrate. Concerning the pretreatment, the best combination was investigated according to the response surface methodology (RSM) by varying H2O2 dosage between 0.0015 and 0.06 g/gTS and ultrasonic specific energy input (USEI) between 35.48 and 1419.36 J/gTS. The increase of carbohydrates concentration was used as target parameter. Results showed that the combination of 0.06 g/gTS of H2O2 with 1419.36 J/gTS of USEI maximized the concentration of carbohydrates. The optimized conditions were used to pretreat the substrate prior conducting DF tests. The use of pretreatment resulted in obtaining a cumulative bioH2 volume of 51.25 mL/L and enhanced the bioH2 production by 125% compared to the control test conducted using raw DCM. Moreover, the second strategy, i.e. co-fermentation with cheese whey (20% v/v) as co-substrate ended up to enhancing the DF performance as the bioH2 production reached a value of 334.90 mL/L with an increase of 1372% compared to the control DF test. To further improve the process, dark fermentation effluents (DFEs) were valorized via photo fermentation (PF), obtaining an additional hydrogen production aliquot.
Collapse
Affiliation(s)
- S Hangri
- Department of Process Engineering National Polytechnic School of Constantine, Algeria
| | - K Derbal
- Department of Process Engineering National Polytechnic School of Constantine, Algeria
| | - G Policastro
- Department of Engineering and Computer Science Telematic University, Pegaso, Italy.
| | - A Panico
- Department of Engineering, University of Campania "Luigi Vanvitelli", Italy.
| | - P Contestabile
- Department of Engineering, University of Campania "Luigi Vanvitelli", Italy
| | - L Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| | - M Race
- Department of Civil and Mechanical Engineering University of Cassino and Southern, Lazio, Italy
| | - M Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| |
Collapse
|
3
|
Farina A, Gargano R, Greco R. Effects of urban catchment characteristics on combined sewer overflows. ENVIRONMENTAL RESEARCH 2024; 244:117945. [PMID: 38109954 DOI: 10.1016/j.envres.2023.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Pollution from Combined Sewer Overflows (CSOs) cause diffuse environmental problems, which are still not satisfactorily addressed by current management practices. In this study, a sensitivity analysis was conducted on several CSO environmental impact indicators, with respect to parameters that characterise climate, urban catchment and the CSO structure activation threshold. The sensitivity analysis was conducted by running 10000 simulations with the Storm Water Management Model, using a simplified modelling approach. The indicators were calculated at yearly scale to evaluate overall potential effects on water bodies. The results could be used to estimate pollution load ranges, known the values of the input parameters, and to investigate suitable strategies to reduce pollution of the receiving water bodies. The percentage of impervious surface of the catchment was found the most influent parameter on all the indicators, and its reduction can contain the discharged pollutant mass. The activation threshold, instead, resulted the second least influent parameter on all the indicators, suggesting that its regulation alone would not be a suitable strategy to reduce CSO pollution. However, along with the reduction of the imperviousness, its increase could effectively decrease the concentration of pollutant in the overflow. The results also indicate that neither adopting sustainable urban drainage practices, nor interventions on the CSO device, significantly affect the frequency of the overflows. Therefore, restricting this latter was found to be ineffective for the reduction of both the discharged pollutant mass and the concentration of pollutant in the overflow.
Collapse
Affiliation(s)
- Alessandro Farina
- Department of Engineering, University Luigi Vanvitelli, Aversa, 81031, Italy.
| | - Rudy Gargano
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, 03043, Italy
| | - Roberto Greco
- Department of Engineering, University Luigi Vanvitelli, Aversa, 81031, Italy
| |
Collapse
|
4
|
Bianco F, Marcińczyk M, Race M, Papirio S, Esposito G, Oleszczuk P. Low temperature–produced and VFA–coated biochar enhances phenanthrene adsorption and mitigates toxicity in marine sediments. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|