1
|
Li Y, Ren J, Ding J, Wang Y, Yan H, Liu F, Wei J, Zhai X, Al-Anazi A, Falaras P. Revealing the enhanced role of hydroxylamine and bimetals in the CuFe 2O 4/PMS/HA system towards effective degradation of organic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137312. [PMID: 39864193 DOI: 10.1016/j.jhazmat.2025.137312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
In this study, a hydroxylamine (HA)-enhanced magnetic spinel catalyst CuFe2O4-activated peroxymonosulfate (PMS) system (CuFe2O4/PMS/HA) was constructed to degrade Sulfamethoxazole (SMX). Results from experiments and theoretical calculations indicated that active species generation mechanism involved the direct activation of PMS by HA, the redox cycles acceleration on the surface of CuFe2O4 by HA, and the synergistic action of the low valence Fe and Cu species in CuFe2O4 for PMS activation. The efficacy of other organic pollutants removal was further validated in bio-treated landfill leachate through removal performance and toxicity assessment. This study provided an understanding of the role of HA and its interactions with Cu-Fe bimetals to activate PMS, advancing our understanding and inspiring the application of similar spinel/reductants/PMS systems.
Collapse
Affiliation(s)
- Yulong Li
- School of Environment, National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China.
| | - Jiayi Ren
- School of Environment, National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- School of Environment, National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China.
| | - Yongxin Wang
- School of Environment, National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China.
| | - Hui Yan
- Zhongtian Hechuang Energy Co., Ltd., Inner Mongolia Autonomous Region, 017000, China.
| | - Fengyang Liu
- Zhongtian Hechuang Energy Co., Ltd., Inner Mongolia Autonomous Region, 017000, China.
| | - Jian Wei
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xuedong Zhai
- Ordos Anxintai Environmental Protection Technology Co., Ltd., Safe Drinking Water and Sewage Disposal Technology Research and Development Center, Inner Mongolia Autonomous Region, 017000, China.
| | - Abdulaziz Al-Anazi
- Department of Chemical Engineering, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15310, Greece.
| |
Collapse
|
2
|
Chen D, Shen F, Liu J, Tang H, Teng X, Yang F, Liu H. Luteolin enhanced antioxidant capability and induced pyroptosis through NF-κB/NLRP3/Caspase-1 in splenic lymphocytes exposure to ammonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170699. [PMID: 38325474 DOI: 10.1016/j.scitotenv.2024.170699] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
During feeding process in intensive chicken farms, the prolonged exposure of chickens to elevated level of ammonia leads to substantial economic losses within poultry farming industry. Luteolin (Lut), known as its anti-inflammatory and antioxidant properties, possesses the ability to eliminate free radicals and enhance the activities of antioxidant enzymes, thus rendering it highly esteemed in production. The objective of this study was to examine the effects of Lut on antioxidant and anti-inflammatory responses of chicken splenic lymphocytes exposed to ammonia. In order to achieve this, we have replicated a protective model involving Lut against ammonia exposure in chicken splenic lymphocytes. The findings of the study indicated that Lut mitigated the elevation of lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) induced by ammonia poisoning. Additionally, Lut demonstrated an increase in the expression of antioxidant enzymes, namely superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Furthermore, Lut exhibited a protective effect on cell morphology and ultrastructure following exposure to ammonia. Moreover, Lut exhibited a reduction in the expression of heat shock proteins (HSPs) and inflammatory cytokines, which were found to be highly expressed in splenic lymphocytes after ammonia exposure. Additionally, Lut demonstrated the ability to inhibit the overexpression of pyroptosis-related genes and proteins (NLRP3 and Caspase-1) in splenic lymphocytes following ammonia exposure. Lut exerted an antioxidant effect on lymphocytes, counteracting elevated levels of oxidative stress following exposure to ammonia. Additionally, Lut had the potential to modulate the expression of HSPs, suppressed the inflammatory response subsequent to ammonia exposure, and influenced the expression of NLRP3 and Caspase-1, thereby mitigating pyroptosis induced by ammonia exposure. The exploration of this subject matter can elucidate the protective properties of Lut against NH4Cl-induced damage in chicken splenic lymphocytes, while also offer insights and experimental groundwork for the utilization of natural therapeutics in animal husbandry to prevent and treat ammonia-related conditions.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fanyu Shen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Wang Y, Liu C, Hu H, Lu Q, Wang H, Zhao C, Du F, Tang N. Fabrication of CuFe 2O 4/Bi 12O 17Cl 2 photocatalyst with intrinsic p-n junction for highly efficient bisphenol A degradation. J Environ Sci (China) 2024; 136:547-558. [PMID: 37923463 DOI: 10.1016/j.jes.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2023]
Abstract
The construction and application of novel highly efficient photocatalysts have been the focus in the field of environmental pollutant removal. In this work, a novel CuFe2O4/Bi12O17Cl2 photocatalysts were synthesized by simple hydrothermal and chemical precipitation method. The fabricated CuFe2O4/Bi12O17Cl2 composite exhibited much higher photocatalytic activity than pristine CuFe2O4 and Bi12O17Cl2 in the removal of bisphenol A (BPA) under visible-light illumination, which ascribed to the intrinsic p-n junction of CuFe2O4 and Bi12O17Cl2. The photocatalytic degradation rate of BPA on CuFe2O4/Bi12O17Cl2 with an optimized CuFe2O4 content (1.0 wt.%) reached 93.0% within 30 min. The capture experiments of active species confirmed that the hydroxyl radicals (•OH) and superoxide radicals (•O2-) played crucial roles in photocatalytic BPA degradation process. Furthermore, the possible degradation mechanism and pathways of BPA was proposed according to the detected intermediates in photocatalytic reaction process.
Collapse
Affiliation(s)
- Yong Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Cheng Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haoyun Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qiujun Lu
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Ningli Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
4
|
Jia X, Zhang J, Huang Q, Xiong C, Ji H, Ren Q, Jin Z, Chen S, Guo W, Chen J, Ge Y, Ding Y. Efficient degradation of ciprofloxacin in wastewater by CuFe 2O 4/CuS photocatalyst activated peroxynomosulfate. ENVIRONMENTAL RESEARCH 2024; 241:117639. [PMID: 37972811 DOI: 10.1016/j.envres.2023.117639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
In this study, CuFe2O4/CuS composite photocatalysts were successfully synthesized for the activation of peroxynomosulfate to remove ciprofloxacin from wastewater. The structural composition and morphology of the materials were analyzed by XRD, SEM, TEM, and Raman spectroscopy. The electrochemical properties of the samples were tested by an electrochemical workstation. The band gap of the samples was calculated by DFT and compared with the experimental values. The effects of different catalysts, oxidant PMS concentrations, and coexisting ions on the experiments were investigated. The reusability and stability of the photocatalysts were also investigated. The mechanism of the photocatalytic degradation process was proposed based on the free radical trapping experiment. The results show that the p-p heterojunction formed between the two contact surfaces of the CuFe2O4 nanoparticle and CuS promoted the charge transfer between the interfaces and inhibited the recombination of electrons and holes. CuFe2O4-5/CuS photocatalyst has the best catalytic activity, and the removal rate of ciprofloxacin is 93.7%. The intermediates in the degradation process were tested by liquid chromatography-mass spectrometry (LC-MS), and the molecular structure characteristics of ciprofloxacin were analyzed by combining with DFT calculations. The possible degradation pathways of pollutants were proposed. This study reveals the great potential of the photocatalyst CuFe2O4/CuS in the activation of PMS for the degradation of ciprofloxacin wastewater.
Collapse
Affiliation(s)
- Xinyu Jia
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China; Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Jinhui Zhang
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China
| | - Qinglin Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Chunyu Xiong
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Haixia Ji
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Qifang Ren
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Zhen Jin
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Shaohua Chen
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China; Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Wanmi Guo
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Jing Chen
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Yao Ge
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Yi Ding
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China; Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China; State Key Laboratory of Silica Sand Resources Utilization, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
6
|
Zhang Q, Yang YL, Guo D, Hong JM. Cu 3(hexaamino triphenylhexane) 2/reduced graphene oxide composites with boosting electron-transfer properties for acetaminophen electrocatalytic degradation. CHEMOSPHERE 2023; 338:139444. [PMID: 37442382 DOI: 10.1016/j.chemosphere.2023.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Electron-transfer properties, as great contributors for electrocatalytic oxidation on the anode, are crucial to pollution degradation. The strong relationship between electron-transfer properties and active species (such as radicals) generation of anode catalysts suggests a new strategy for pollution-degradation efficiency improvement. In this study, a novel composite of Cu3(hexaamino triphenylhexane)2 [Cu3(HITP)2] and reduced graphene oxide (RGO) was synthesized to construct electron-transfer pathways between the two layers. Benefiting from the connection formed through RGO-O-N-Cu, the electron transfer from RGO to Cu3(HITP)2 was accelerated. The resettled charge distribution led the C atoms in the RGO layer, and the Cu and C atoms in Cu3(HITP)2 layer acted as the main surface active sites. O2•-, 1O2, and reactive chlorine were then triggered to boost the degradation of acetaminophen. The source of O2•- and 1O2 was more likely from surface oxygen groups rather than dissolved O2. Overall, this research provided a perspective proof of conductive Cu3(HITP)2/RGO composite construction with 2D/2D structure for electrocatalytic-oxidation improvement.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Yan Ling Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Die Guo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Jun-Ming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
7
|
Wang J, Guo Z, Chen S, Chen Y, Qin Z, Xu K. High dispersity and ultralight PVP-mediated Al/MFe2O4/g-C3N4 (M = Cu, Mg, Ni) nanothermites synthesized by a novel sol-freeze-drying technology. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2023.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Cai C, Liu Y, Xu R, Zhou J, Zhang J, Chen Y, Liu L, Zhang L, Kang S, Xie X. Bicarbonate enhanced heterogeneous activation of peroxymonosulfate by copper ferrite nanoparticles for the efficient degradation of refractory organic contaminants in water. CHEMOSPHERE 2023; 312:137285. [PMID: 36403810 DOI: 10.1016/j.chemosphere.2022.137285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the treatment of residual refractory organic contaminants (ROCs) is a huge challenge for environmental remediation. In this study, a potential process is provided by copper ferrite catalyst (CuFe2O4) activated peroxymonosulfate (PMS, HSO5-) in the bicarbonate (HCO3-) enhanced system for efficient removal of Acid Orange 7 (AO7), 2,4-dichlorophenol, phenol and methyl orange (MO) in water. The impact of key reaction parameters, water quality components, main reactive oxygen species (ROS), probable degradation mechanism, rational degradation pathways and catalyst stability were systematically investigated. A 95.0% AO7 (C0 = 100 mg L-1) removal was achieved at initial pH (pH0) of 5.9 ± 0.1 (natural pH), CuFe2O4 dosage of 0.15 g L-1, PMS concentration of 0.98 mM, HCO3- concentration of 2 mM, and reaction time of 30 min. Both sulfate radical (SO4-•) and hydroxyl radical (•OH) on the surface of catalyst were proved as the predominant radical species through radical quenching experiments and electron paramagnetic resonance (EPR) analysis. The buffer nature of HCO3- was partially contributed for the enhanced degradation of AO7 under CuFe2O4/PMS/HCO3- system. Importantly, according to 13C nuclear magnetic resonance (NMR) and EPR analysis, the positive effect of bicarbonate may be mainly attributed to the formation of peroxymonocarbonate (HCO4-), which may enhance the generation of •OH. The magnetic CuFe2O4 particles can be well recycled and the leaching concentration of Cu was acceptable (<1 mg L-1). Considering the widespread presence of bicarbonate in water environment, this work may provide a safe, efficient, and sustainable technique for the elimination of ROCs from practical complex wastewater.
Collapse
Affiliation(s)
- Chun Cai
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China.
| | - Yangfan Liu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Rui Xu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Jiaheng Zhou
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Jin Zhang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Yu Chen
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Lingyu Liu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Lexiang Zhang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Shuping Kang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Xianjun Xie
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|