1
|
Biswas B, Parveen N, Goel S. Optimization of Electrocoagulation for Natural Organic Matter Removal and Its Impact on Disinfection By-Products Formation. JOURNAL OF ENVIRONMENTAL ENGINEERING 2024; 150. [DOI: 10.1061/joeedu.eeeng-7579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Bishwatma Biswas
- Senior Research Scholar, Environmental Engineering and Management, Dept. of Civil Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India. ORCID:
| | - Naseeba Parveen
- Ad hoc Faculty, Civil Engineering Dept., National Institute of Technology Mizoram, Aizawl 796012, India; formerly, Senior Research Scholar, School of Environmental Science and Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudha Goel
- Professor, Environmental Engineering and Management, Dept. of Civil Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India (corresponding author). ORCID:
| |
Collapse
|
2
|
Aryanti PTP, Nugroho FA, Anwar N, Rusgiyarto F, Phalakornkule C, Kadier A. Integrated bipolar electrocoagulation and PVC-based ultrafiltration membrane process for palm oil mill effluent (POME) treatment. CHEMOSPHERE 2024; 347:140637. [PMID: 37952820 DOI: 10.1016/j.chemosphere.2023.140637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/02/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
In this study, the effectiveness of integrating electrocoagulation (EC) and ultrafiltration (UF) membranes for palm oil mill effluent (POME) wastewater treatment was investigated. The impact of various parameters on contaminant removal efficiency, including electrode configuration (monopolar and bipolar), number of anodes, agitation rate, and current density, was studied. The findings demonstrated that using bipolar (BP) electrodes in the EC reactor improved coagulation efficiency. However, an increase in agitation rate led to a decrease in removal efficiency. The electrode configuration of 2A-2C-2B achieved high contaminant removal with a lower electrode consumption compared to the 4A-2C and 4A-2C-2B configurations. The removal efficiencies for total dissolved solids (TDS), total suspended solids (TSS), chemical oxygen demand (COD), and biological oxygen demand (BOD) were 59.1%, 99.9%, 96.8%, and 96%, respectively. The operating cost for the electrode configuration of 2A-2C-2B was estimated to be 2.71 US$ m-3 at an effluent capacity of 50 m3 d-1 and 20 h d-1 of operating time, while the energy requirement was 6.20 kWh m-3. An increase in operating time from 5 to 24 h d-1 raised the specific operating cost from 2.17 to 2.85 US$ m-3. This study provides valuable insights into optimizing EC and UF processes for POME wastewater treatment, which could have significant implications for sustainable industrial practices.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia.
| | - Febrianto Adi Nugroho
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Nadiem Anwar
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Ferry Rusgiyarto
- Civil Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Chantaraporn Phalakornkule
- Department of Chemical Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yan F, An L, Xu X, Du W, Dai R. A review of antibiotics in surface water and their removal by advanced electrocoagulation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167737. [PMID: 37827312 DOI: 10.1016/j.scitotenv.2023.167737] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The overuse and misuse of antibiotics have posed a serious threat to environment and human health, and even given rise to antibiotic resistance genes (ARGs). Antibiotics are ubiquitous in surface water worldwide with concentrations ranging from ng/L to μg/L level, being widely detected in rivers, lakes, seawater, and even drinking water. To address this thorny issue, numerous advanced technologies have been implemented to remove antibiotics. Advanced electrocoagulation (AEC) technologies, known as the combination of EC and other technologies capable of generating •OH in situ, have garnered considerable attention owing to their advances and high efficiency. This critical review investigated >120 relevant publications from the last few years (2017-2023) for the global distribution of commonly used antibiotics in surface water and their removal by various AEC technologies. Significant AEC technologies, such as combined electro-Fenton and EC (EF-EC) and combined electro-oxidation and EC (EO-EC), were reviewed. Their mechanism and characteristics were detailed. The major research results on removing antibiotics or the application potentials were elaborately described and discussed. Finally, the application trends of AEC technologies, as well as the challenges that may arise were prospected. The recommendations for controlling global antibiotic contamination in surface water were shared.
Collapse
Affiliation(s)
- Feng Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Lili An
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xin Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Wenjun Du
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Bi J, Xing S, Shan G, Zhao Y, Ji Z, Zhu D, Hao H. Electro-intensified simultaneous decontamination of coexisting pollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166949. [PMID: 37696408 DOI: 10.1016/j.scitotenv.2023.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The treatment of wastewater has become increasingly challenging as a result of its growing complexity. To achieve synergistic removal of coexisting pollutants in wastewater, one promising approach involves the integration of electric fields. We conducted a comprehensive literature review to explore the potential of integrating electric fields and developing efficient electro-intensified simultaneous decontamination systems for wastewater containing coexisting pollutants. The review focused on comprehending the applications and mechanisms of these systems, with a particular emphasis on the deliberate utilization of positive and negative charges. After analyzing the advantages, disadvantages, and application efficacy of these systems, we observed electro-intensified systems exhibit flexible potential through their rational combination, allowing for an expanded range of applications in addressing simultaneous decontamination challenges. Unlike the reviews focusing on single elimination, this work aims to provide guidance in addressing the environmental problems resulting from the coexistence of hazardous contaminants.
Collapse
Affiliation(s)
- Jingtao Bi
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Siyang Xing
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Zhao
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiyong Ji
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, TX 77005, United States
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Zhang X, Bhattacharya T, Wang C, Kumar A, Nidheesh PV. Straw-derived biochar for the removal of antibiotics from water: Adsorption and degradation mechanisms, recent advancements and challenges. ENVIRONMENTAL RESEARCH 2023; 237:116998. [PMID: 37634688 DOI: 10.1016/j.envres.2023.116998] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Antibiotics, a kind of containments with the properties of widely distributed and difficult to degrade, has aroused extensive attention in the world. As a prevalent agricultural waste, straws can be utilized to prepare biochar (straw-derived biochar, SBC) to remove antibiotics from aquatic environment. To date, although a number of review papers have summarized and discussed research on biochar application in wastewater treatment and soil remediation, there are few reviews on SBC for antibiotic removal. Due to the limitations of poor adsorption and degradation performance of the pristine SBC, it is necessary to modify SBC to improve its applications for antibiotics removal. The maximum antibiotic removal capacity of modified SBC could reach 1346.55 mg/g. Moreover, the adsorption mechanisms between modified SBC and antibiotics mainly involve π-π interactions, electrostatic interactions, hydrophobic interactions, and charge dipole interactions. In addition, the modified SBC could completely degrade antibiotics within 6 min by activating oxidants, such as PS, PDS, H2O2, and O3. The mechanisms of antibiotic degradation by SBC activated oxidants mainly include free radicals (including SO4•-, •OH, and O2•-) and non-free radical pathway (such as, 1O2, electrons transfer, and surface-confined reaction). Although SBC and modified SBC have demonstrated excellent performance in removing antibiotics, they still face some challenges in practical applications, such as poor stability, high cost, and difficulties in recycling. Therefore, the further research directions and trends for the development of SBC and biochar-based materials should be taken into consideration.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Tansuhree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Abhishek Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Puthiya Veetil Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
6
|
Oladipo AA, Mustafa FS. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:291-321. [PMID: 36895441 PMCID: PMC9989679 DOI: 10.3762/bjnano.14.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A serious threat to human health and the environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a promising green and sustainable wastewater treatment method for a cleaner environment. Due to their narrow bandgaps, distinctive layered structures, plasmonic, piezoelectric and ferroelectric properties, and desirable physicochemical features, bismuth-based nanostructure photocatalysts have emerged as one of the most prominent study topics compared to the commonly used semiconductors (TiO2 and ZnO). In this review, the most recent developments in the use of photocatalysts based on bismuth (e.g., BiFeO3, Bi2MoO6, BiVO4, Bi2WO6, Bi2S3) to remove dyes and antibiotics from wastewater are thoroughly covered. The creation of Z-schemes, Schottky junctions, and heterojunctions, as well as morphological modifications, doping, and other processes are highlighted regarding the fabrication of bismuth-based photocatalysts with improved photocatalytic capabilities. A discussion of general photocatalytic mechanisms is included, along with potential antibiotic and dye degradation pathways in wastewater. Finally, areas that require additional study and attention regarding the usage of photocatalysts based on bismuth for removing pharmaceuticals and textile dyes from wastewater, particularly for real-world applications, are addressed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| | - Faisal Suleiman Mustafa
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| |
Collapse
|
7
|
Green Synthesis of Fe-Cu Bimetallic Supported on Alginate-Limestone Nanocomposite for the Removal of Drugs from Contaminated Water. Polymers (Basel) 2023; 15:polym15051221. [PMID: 36904462 PMCID: PMC10007252 DOI: 10.3390/polym15051221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
In this study Fe-Cu supported on Alginate-limestone (Fe-Cu/Alg-LS) was prepared. The increase in surface area was the main motivation for the synthesis of ternary composites. Scanning electronic microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were used to examine the surface morphology, particle size, percentage of crystallinity, and elemental content of the resultant composite. Fe-Cu/Alg-LS was used as an adsorbent for the removal of drugs such as ciprofloxacin (CIP) and levofloxacin (LEV)from contaminated medium. The adsorption parameters were computed using kinetic and isotherm models. The maximum removal efficiency of CIP (20 ppm) and LEV (10 ppm) was found to be 97.3% and 100%, respectively. The optimal conditions were pH 6 and 7 for CIP and LEV, optimum contact time 45, 40 min for CIP and LEV, and temperature of 303 K. The pseudo-second-order model, which confirmed the chemisorption properties of the process, was the most appropriate kinetic model among the ones used, and the Langmuir model, which was the most appropriate isotherm model. Moreover, the parameters of thermodynamics were also assessed. The results imply that the synthesized nanocomposites can be used to remove hazard materials from aqueous solutions.
Collapse
|
8
|
Yu Y, Sun Y, Ge B, Yan J, Zhang K, Chen H, Hu J, Tang J, Song S, Zeng T. Synergistic removal of organic pollutants from water by CTF/BiVO 4 heterojunction photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27570-27582. [PMID: 36385341 DOI: 10.1007/s11356-022-24184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Herein, a series of covalent triazine framework/bismuth vanadate (CTF/BiVO4) heterojunction catalysts were prepared using the hydrothermal method. The mechanism of the CTF/BiVO4 heterojunction photocatalyst in the system was examined to provide a theoretical basis for constructing a high-efficiency photocatalysis composite system for removing organic pollutants from water. Compared with CTF and BiVO4 catalysts alone, composite materials have been shown to have significantly higher degradation efficiencies against organic pollutants in water. Moreover, the degradation effect was found to be optimal when the mass ratio of CTF to BiVO4 was 1:1 (1-CTF/BiVO4). On the basis of physicochemical characterization results, it was concluded that the effective construction of CTF/BiVO4 composite photocatalyst material systems and the formation of type II heterojunction structures between CTF and BiVO4 effectively promote the separation of photogenerated carriers and increase the interface charge transfer efficiency.
Collapse
Affiliation(s)
- Yan Yu
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China.
| | - Yanan Sun
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Beixiao Ge
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Jiawen Yan
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Kaili Zhang
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Hui Chen
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Jinxing Hu
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Juntao Tang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| |
Collapse
|
9
|
Nidheesh PV, Gökkuş Ö. Advances in electrocoagulation process. CHEMOSPHERE 2023; 310:136779. [PMID: 36208801 DOI: 10.1016/j.chemosphere.2022.136779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, Turkey.
| |
Collapse
|
10
|
Tibebe D, Negash A, Mulugeta M, Kassa Y, Moges Z, Yenealem D. Investigation of selected physico-chemical quality parameters in industrial wastewater by electrocoagulation process, Ethiopia. BMC Chem 2022; 16:67. [PMID: 36109785 PMCID: PMC9476262 DOI: 10.1186/s13065-022-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractNowadays, there are more than fourteen major state and private owned textile industries and garment factories in Ethiopia. However, these textile effluents are directly discharged without treatment to the surrounding environment, as a result, the pollutants bring serious problem to the surrounding community including health such as skin diseases, asthma, abortion, carcinogenic effect, biodiversity loss and mutagenic effect on the. The main objective of this study is characterization and treatment of the textile effluent using aluminum electrodes in the electrocoagulation process. EC experimental setups were designed and different parameters were optimized. Electrocoagulation treatment process eliminates physicochemical quality indicators such as pH, electrical conductivity (EC); turbidity, biological oxygen demand (BOD), ammonia; nitrate, nitrite, total nitrogen (TN) and phosphate were determined using standard procedures. From the result, the maximum removal efficiency of phosphate, ammonia, TN, electrical conductivity, turbidity and BOD were obtained 97, 87, 88, 89, 99 and 66%, respectively. Analyses of the electrochemically generated sludge by X-ray Diffraction, Scanning Electron Microscope (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) revealed that the expected crystalline aluminum oxides (bayerite (Al(OH)3 diaspore (AlO(OH)) were found in the sludge. The amorphous phase was also found in the floc. Therefore, a treatment technology was good and encourages the community to apply the technique for the treatment of textile effluent before discharging into the environment.
Collapse
|