1
|
Li D, Zhang X, Zhang H, Fan Q, Guo B, Li J. A global meta-analysis reveals effects of heavy metals on soil microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138018. [PMID: 40138950 DOI: 10.1016/j.jhazmat.2025.138018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Heavy metal (HM) contamination disrupts soil ecosystem functions. Microorganisms are pivotal for sustaining soil health, but accurately assessing the ecological risks of HM contamination to microorganisms remains challenging. Here, we conducted a meta-analysis synthesizing 914 datasets from 72 studies to quantify and evaluate the impacts of HMs on microorganisms. The overall effect value results indicate that HM negatively impacts most microbiological indicators, with bacterial abundance (-38 %), fungal abundance (-18 %), microbial biomass carbon (-42 %), microbial biomass nitrogen (-44 %), arylsulfatase (-45 %) and dehydrogenase activity (-66 %) were significantly reduced (p < 0.01), suggesting they can act as sensitivity indicators for assessing ecological risk of microorganisms. Compared to bacteria, fungal indicators (e.g., fungal community structure and Shannon index) are less responsive to HM contamination. At low potential ecological risk index (RI < 150), HM contamination positively impacted certain microbial indicators, such as fungal abundance, fungal Shannon index, and β-glucosidase activity. With increasing RI levels, the negative effects of HMs on microorganisms became more pronounced. Microbiological indicators in acidic soils (pH < 6.5), coarse textured soils, and mining soils were more negatively affected by HMs. Random forest and structural equation modeling analysis also identified RI levels and pH as crucial factors in determining the microbial response to HMs. Adjusted RI (adRI) were calculated using adjusted toxicity factors (adTF). The adRI demonstrated stronger correlations with microbial indicators and lower root-mean-square error (RMSE) in the random forest model than the RI, indicating that adTF is a more effective method for evaluating the effects of HMs on microorganisms. This study enhances the accuracy of quantifying and assessing HM impacts on microorganisms, offering crucial scientific basis for environmental protection and soil remediation.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi 030600, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hong Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qirui Fan
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Baobei Guo
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
2
|
Xu M, Ma J, Gao C, Sanders CJ, Zhou H, Li W. Tidal and seasonal effects on sediment methane emissions from three different mangrove species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179535. [PMID: 40311343 DOI: 10.1016/j.scitotenv.2025.179535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
The anaerobic environment of mangrove sediments due to periodic tides is conducive to methane (CH4) production, but processes and mechanisms of CH4 emission from mangrove sediments are not yet well understood. We used in situ field monitoring and laboratory experiments to investigate the effects of tides and seasons on CH4 emissions from the sediments of Sonneratia apetala (SA), Kandelia obovata (KO), and Avicennia marina (AM), respectively. Methane emissions from the sediments of all mangrove species were significantly higher in summer than in winter, with overall CH4 fluxes being 2.14 times higher during the after-ebb tide compared to the pre-flood tide. Among the mangrove species, AM (16.77 ± 13.73 mg m-2 h-1) exhibited the highest emissions, followed by SA (1.45 ± 0.90 mg m-2 h-1) and KO (0.14 ± 0.16 mg m-2 h-1). CH4 emissions in three mangrove species were mainly driven directly by abiotic factors, including sediment organic carbon (SOC) that could provide substrate for methanogens to generate CH4, and dissolved CH4 concentration in porewater likely served as a carbon source or turnover state for CH4 to eventually enter the atmosphere. Also, sediment CH4 emissions were suppressed by the α-diversity of methanogenic communities. In addition, pH, CH4 flux, SOC, and redox potential significantly shaped structure of the methanogenic communities, potentially regulating sediment CH4 emissions. This study result highlights that abiotic factors can greatly influence CH4 emissions from mangrove sediments, as well as emphasizes the important role of the sediment-porewater-atmosphere pathway on CH4 emissions.
Collapse
Affiliation(s)
- Meili Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; Guangdong Haifeng Wetland Ecosystem National Observation and Research Station, Guangzhou 510520, China
| | - Jiaojiao Ma
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; Guangdong Haifeng Wetland Ecosystem National Observation and Research Station, Guangzhou 510520, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; Guangdong Haifeng Wetland Ecosystem National Observation and Research Station, Guangzhou 510520, China.
| | - Christian J Sanders
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Haichao Zhou
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
3
|
Xu L, Zhao F, Peng J, Ji M, Li BL. A Comprehensive Review of the Application and Potential of Straw Biochar in the Remediation of Heavy Metal-Contaminated Soil. TOXICS 2025; 13:69. [PMID: 39997887 PMCID: PMC11860312 DOI: 10.3390/toxics13020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
With the rapid development of industry and agriculture, soil heavy metal contamination has become an important environmental issue faced today and has gradually attracted widespread attention. Finding a cheap, widely available, and biodegradable material that can promote crop growth and stabilize heavy metals has become a research focus. Crop straw biochar, due to its high specific surface area, rich surface functional groups, and high cation exchange capacity (CEC), has shown good effects on the remediation of inorganic and organic pollutants in the environment. This article reviews recent research on the use of crop straw biochar for soil heavy metal contamination remediation, providing a detailed analysis from the preparation, characteristics, modification of crop straw biochar, mechanisms for reducing the toxicity of heavy metals in soil, and its application and risks in remediating heavy metal-contaminated soils. It also comprehensively discusses the potential application of crop straw biochar in the remediation of heavy metal-contaminated soils. The results show that crop straw biochar can be used as a new type of immobilizing material for the remediation of heavy metal-contaminated soils, but there are issues with the remediation technology that needs to be optimized and innovated, which poses challenges to the widespread application of crop straw biochar. In the future, efforts should be strengthened to optimize and innovate the application technology of crop straw biochar, conduct research on the remediation effects of cheap modified crop straw biochar and the co-application of crop straw biochar with other immobilizing materials on heavy metal-contaminated soils, and carry out long-term monitoring of the effects of crop straw biochar in soil heavy metal remediation in order to achieve the goal of ensuring food safety and the rational use of solid waste.
Collapse
Affiliation(s)
- Lei Xu
- Henan Province Engineering Research Center of Environmental Laser Remote Sensing Technology and Application, Nanyang Normal University, Nanyang 473061, China;
| | - Feifei Zhao
- Henan Province Engineering Research Center of Environmental Laser Remote Sensing Technology and Application, Nanyang Normal University, Nanyang 473061, China;
| | - Jianbiao Peng
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473061, China; (J.P.); (M.J.); (B.L.L.)
| | - Mingfei Ji
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473061, China; (J.P.); (M.J.); (B.L.L.)
| | - B. Larry Li
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473061, China; (J.P.); (M.J.); (B.L.L.)
- Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California–Riverside, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Li Z, Xu X, Qi X, Xu C, Wang G, Zhang S, Yang Z, Cheng Z, Cai J, Lv G, Li T, Pu Y, Jia Y. Sepiolite immobilizes soil Cd to optimize microbial community structure thereby promoting wheat growth and reducing Cd accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117649. [PMID: 39765111 DOI: 10.1016/j.ecoenv.2024.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Immobilization remediation is a widely employed technology that effectively reduces the migration rate and bioavailability of cadmium (Cd). Sepiolite, a commonly used remediation agent, has proven effective in decreasing soil Cd availability and reducing Cd accumulation in agricultural products. However, further investigation is needed to understand the impact of sepiolite on soil environmental quality and microbial communities. If we add sepiolite to the soil, the soil microbial community structure will be improved, and the abundance of bacteria associated with Cd-fixing and plant growth-promoting will be enhanced, which will significantly immobilize soil Cd thereby enhancing Cd tolerance and reducing Cd uptake in wheat. In this study, field experiments were conducted to assess the effects of sepiolite on wheat yield traits, Cd concentration in various organs, Cd transport and enrichment coefficients in wheat, soil pH and Cd availability, and soil microbial communities. The findings confirm that applying sepiolite in the field enhanced the main yield traits of wheat, significantly elevated soil pH by 0.30-1.04 units, reduced Cd bioavailability by 55.46 % -93.27 % (P < 0.05), and decreased Cd accumulation in wheat by regulating Cd transport and enrichment in different plant organs. The most substantial changes were observed when the sepiolite application rate reached 4500 kg ha-1. Moreover, the study noted an increase in the relative abundance of dominant species such as Bacteroidota, Acidobacteria, Myxococcota, and Patescibacteria at the phylum level, as well as Sphingomonas at the genus level (3.35 % -39.27 %). This shift indicated an optimized microbial community structure. Furthermore, the relative abundance of soil Cd fixing and promoting bacterial communities, including Massilia, Pseudomonas, and Pantoea, respectively increased by 80.20 %, 64.91 %, and 85.19 % when the usage of sepiolite reaches 4500 kg ha-1. The research underscores that sepiolite can effectively immobilize Cd in soil, enhance the microbial community structure of Cd-contaminated soil, reduce Cd accumulation in wheat, and promote the safe production of agricultural products.
Collapse
Affiliation(s)
- Ziqi Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China; Sichuan Keyuan Engineering Technology Testing Center Co., LTD, Chengdu 611130, China.
| | - Xin Qi
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China
| | - Changlian Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Song Y, Shi X, Revil A, Deng Y. Influence of dissolved and non-aqueous phase toluene on spectral induced polarization signatures of soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135973. [PMID: 39342856 DOI: 10.1016/j.jhazmat.2024.135973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Fifty-two laboratory experiments are undertaken to analyze the sensitivity of spectral induced polarization (SIP) to the presence of toluene in soils. Among these experiments, four experiments are conducted to collect SIP responses of soils containing dissolved phase toluene within the pore water using columns. The results demonstrate that SIP is not sensitive to the presence of dissolved phase toluene in soils. The remaining forty-eight experiments are undertaken with four types of soils mixed with non-aqueous phase toluene. The experimental results prove that SIP is sensitive to toluene saturation under varying salinity conditions. These observations are well-explained by a published petrophysical model accounting for the effects of water saturation on complex conductivity. The water saturation exponent n and quadrature conductivity exponent p in this model are obtained by fitting complex conductivity data versus saturation at different saturation levels. The petrophysical model is tested where in-phase and quadrature conductivity responses are predicted from water saturation, soil cation exchange capacity (CEC), and pore water conductivity. The petrophysical model provides satisfactory predictions for non-aqueous phase toluene saturation. Overall, this study contributes to our understanding of SIP as a non-intrusive tool for characterizing toluene contamination in soils with applications to the field.
Collapse
Affiliation(s)
- Yalin Song
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - André Revil
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, UMR CNRS 5204, EDYTEM, Le Bourget-du-Lac, France.
| | - Yaping Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Liu Y, Ma J, Chu J, Sun W, Wang Q, Liu Y, Zou P, Ma J. Machine learning and structural equation modeling for revealing the influence factors and pathways of different water management regimes acting on brown rice cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176033. [PMID: 39322080 DOI: 10.1016/j.scitotenv.2024.176033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
Excessive cadmium (Cd) in brown rice has detrimental effects on rice growth and human health. Water management is a cost-effective, eco-friendly measure to suppress Cd accumulation in rice. However, there is no acknowledged water management regime that reduces Cd accumulation in brown rice without compromising the yield. Meanwhile, the major factors affecting brown rice Cd and the pathways of water management affecting rice Cd are not clear. This study explored major factors affecting brown rice Cd using machine learning (ML) and examined the pathways of water management affecting rice Cd using a structural equation model (SEM). Three water management systems were set up, namely flooding, water-saving, and wetting irrigation. Results showed that water-saving irrigation increased dry matter and reduced Cd content and translocation. Root uptake during the grain filling stage and Cd remobilization before the grain filling stage contributed 36 % and 64 % of the Cd accumulation in brown rice, respectively. ML explained 97 % of the variance, suggesting that crop covariates were the most important (e.g., the brown rice bioconcentration factor (12 %), stem Cd (9 %), root-to-stem translocation factor (7 %)), followed by soil covariates (e.g., reducing substances 12 %) and water management (3 %). All SEM explanatory variables collectively explained 94 % of the variation, with a predictive power of 76 %. Water treatments indirectly affected soil available Fe and Mn (indirect effect coefficient = 0.909), iron plaques (indirect effect coefficient = 0.866), soil available Cd (indirect effect coefficient = -0.671), and Cd intensity of xylem sap (BICd, indirect effect coefficient = -0.664) via pH and reducing substances. BICd significantly positively affected stem Cd (path coefficient = 0.445). These findings provide insight into the agronomic and environmental effects of water management on brown rice Cd and influence pathways in soil-rice systems, suggesting that water-saving irrigation may alleviate Cd contamination in the paddy soil.
Collapse
Affiliation(s)
- Yingxia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jinchuan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Junjie Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Wanchun Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ping Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
7
|
Patro A, Dwivedi S, Thakur A, Sahoo PK, Biswas JK. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024; 27:110812. [PMID: 39310752 PMCID: PMC11416529 DOI: 10.1016/j.isci.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
This review highlights the application of biochar (BC) for attaining different SDGs (SDG 6: clean water and sanitation, SDG 7: affordable and clean energy, SDG 13: climate action, and SDG 15: life on land). These goals coincide with the various existing environmental problems including wastewater treatment, soil amendment, greenhouse gas remediation, and bioenergy generation. So, the review encompasses the various mechanisms involved in the BC-assisted treatment and reclamation of water, pollutant immobilization and enhancing soil properties, reduction of greenhouse gas emission during the wastewater treatment process and soil amendment mechanisms, bioenergy generation through various electrode material, biodiesel production, and many more. The review also explains the various drawbacks and limitations of BC application to the available environmental issues. Conclusively, it was apprehended that BC is an appropriate material for several environmental applications. More research interventions are further required to analyze the applicability of different BC materials for attaining other available SDGs.
Collapse
Affiliation(s)
- Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Anjali Thakur
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
8
|
Du Z, Sun X, Zheng S, Wang S, Wu L, An Y, Luo Y. Optimal biochar selection for cadmium pollution remediation in Chinese agricultural soils via optimized machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135065. [PMID: 38943890 DOI: 10.1016/j.jhazmat.2024.135065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Biochar is effective in mitigating heavy metal pollution, and cadmium (Cd) is the primary pollutant in agricultural fields. However, traditional trial-and-error methods for determining the optimal biochar remediation efficiency are time-consuming and inefficient because of the varied soil, biochar, and Cd pollution conditions. This study employed the machine learning method to predict the Cd immobilization efficiency of biochar in soil. The predictive accuracy of the random forest (RF) model was superior to that of the other common linear and nonlinear models. Furthermore, to improve the reliability and accuracy of the RF model, it was optimized by employing a root-mean-squared-error-based trial-and-error approach. With the aid of the optimized model, the empirical categories for soil Cd immobilization efficiency were biochar properties (60.96 %) > experimental conditions (19.6 %) ≈ soil properties (19.44 %). Finally, this study identified the optimal biochar properties for enhancing agricultural soil Cd remediation in different regions of China, which was beneficial for decision-making regarding nationwide agricultural soil remediation using biochar. The immobilization effect of alkaline biochar was pronounced in acidic soils with relatively high organic matter. This study provides insights into the immobilization mechanism and an approach for biochar selection for Cd immobilization in agricultural soil.
Collapse
Affiliation(s)
- Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; Xiangtan Experimental Station of Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Xiangtan 411199, PR China
| | - Xuan Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; Xiangtan Experimental Station of Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Xiangtan 411199, PR China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing 100125, PR China
| | - Shunyang Wang
- Institute of Soil Science, Chinese Academy of Sciences, Jiangsu, Nanjing 210008, PR China
| | - Lina Wu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; Xiangtan Experimental Station of Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Xiangtan 411199, PR China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; Xiangtan Experimental Station of Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Xiangtan 411199, PR China.
| | - Yongming Luo
- Institute of Soil Science, Chinese Academy of Sciences, Jiangsu, Nanjing 210008, PR China.
| |
Collapse
|
9
|
Zhao B, Xu Z, Li S, Yang Z, Ling W, Wu Z, Gao J, Wang Y. Reduction of the exchangeable cadmium content in soil by appropriately increasing the maturity degree of organic fertilizers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121599. [PMID: 38968895 DOI: 10.1016/j.jenvman.2024.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 07/07/2024]
Abstract
To enhance the remediation effect of heavy metal pollution, organic fertilizers with different maturity levels were added to cadmium-contaminated soil. The remediation effect was determined by evaluating the form transformation and bioavailability of cadmium in heavy metal-contaminated soil. -Results showed that when the maturity was 50%, although the soil humus (HS) content increased, it didn't contribute to reducing the bioavailability of soil Cd. Appropriately increasing the maturity (GI ≥ 80%), the HS increased by 113.95%∼157.96%, and reduced significantly the bioavailability of soil Cd, among the exchangeable Cd decreased by 16.04%∼33.51% (P < 0.01). The structural equation modeling (SEM) revealed that HS content is a critical factor influencing the transformation of Cd forms and the reduction of exchangeable Cd accumulation; the HS and residual Cd content were positively correlated with the maturity (P < 0.01), while exchangeable Cd content was negatively correlated with maturity (P < 0.01), and the correlation increased with increasing maturity. In summary, appropriately increasing the maturity (GI ≥ 80%) can increase significantly HS, promote the transformation of exchangeable Cd into residual Cd, and ultimately enhance the effectiveness of organic fertilizers in the remediation of soil Cd pollution. These results provide a new insight into the remediation of Cd-contaminated soil through organic fertilizer as soil amendment in Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Zhao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215128, Jiangsu, China
| | - Shaoming Li
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhixin Yang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wen Ling
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhicheng Wu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiangfei Gao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Zhang X, Zhu W, Li X, Chen Z, Ren D, Zhang S. Effect of biochar and iron ore tailing waste amendments on cadmium bioavailability in a soil and peanut seedling system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:353. [PMID: 39080070 DOI: 10.1007/s10653-024-02120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024]
Abstract
Biochar and iron ore tailing waste have been widely separately applied for remediation of various contaminants, but the remediation effect of their combination on cadmium (Cd) pollution is unclear. In this study, the peanut biochar (BC), thermally activated iron ore tailing waste (TS), and the products of the co-pyrolysis of peanut shell and iron ore tailing waste (TSBC) were prepared for stabilizing Cd and reducing its bio-accessibility in soil and peanut seedling system. Present amendments enhanced soil pH, cation exchange capacity, electrical conductivity, and organic carbon content. The application of BC, TS, and TSBC led to decreases in acid-extractable Cd proportion of 2.2-8.81%, 2.43-7.20%, and 7.84-11.57%, respectively, and increases in the residual Cd proportion of 3.48-8.33%, 3.27-11.50%, and 9.02-13.45%, respectively. There were no significant differences in Cd accumulation in peanut roots due to three amendments treatments, especially at low Cd concentrations (i.e., Cd concentration of 0, 1, and 2 mg·kg-1), and with a relatively small reduction (2.16-9.05%) in root Cd accumulation under the high Cd treatments of 5 and 10 mg·kg-1. The Cd concentrations in seedling roots were significantly positively related to the acid-extractable Cd fraction, with a Pearson correlation coefficient of r = 0.999. The maximum toxicity mitigating effects were found in TSBC treatment, with increases in the ranges of 9.80-17.58% for fresh weight, 5.59-14.99% for dry weight, 5.16-10.17% for plant height, 5.96-10.34% for root length, 5.43-21.67% for chlorophyll a content, 17.17-71.28% for chlorophyll b content, and 13.11-39.60% for carotenoid content in peanut seedlings. Therefore, TSBC is a promising amendment for minimizing Cd contamination in peanut crops and utilizing industrial solid waste materials efficiently.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Wennong Zhu
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Xin Li
- Baowu Water Technology Co., Ltd. Wuhan Branch., Ltd., Wuhan, 430073, People's Republic of China.
- Wuhan Jingwei Environmental Technology Co., Ltd., Wuhan, 430073, People's Republic of China.
| | - Zhihua Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| |
Collapse
|
11
|
Feng Y, Darma AI, Yang J, Wang X, Shakouri M. Protaetia brevitarsis larvae produce frass that can be used as an additive to immobilize Cd and improve fertility in alkaline soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134379. [PMID: 38733779 DOI: 10.1016/j.jhazmat.2024.134379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Bioconversion of agricultural waste by Protaetia brevitarsis larvae (PBL) holds significant promise for producing high-quality frass organic amendments. However, the effects and mechanisms of PBL frass on Cd immobilization in an alkaline environment remain poorly understood. In this study, three types of frass, namely maize straw frass (MF), rice straw frass (RF), and sawdust frass (SF), were produced by feeding PBL. The Cd immobilization efficiencies of three frass in alkaline solutions and soils were investigated through batch sorption and incubation experiments, and spectroscopic techniques were employed to elucidate the sorption mechanisms of Cd onto different frass at the molecular level. The results showed that MF proved to be an efficient sorbent for Cd in alkaline solutions (176.67-227.27 mg g-1). X-ray absorption near-edge structure (XANES) spectroscopy indicated that Cd immobilization in frass is primarily attributed to the association with organic matter (OM-Cd, 78-90%). And MF had more oxygen-containing functional groups than the other frass. In weakly alkaline soils, MF application (0.5-1.5%) significantly decreased Cd bioavailability (5.65-18.48%) and concurrently improved soil nutrients (2.21-56.79%). Redundancy analysis (RDA) unveiled that pH, CEC, and available P were important factors controlling Cd fractions. Path analysis demonstrated that MF application affected Cd bioavailability directly and indirectly by influencing soil chemical properties and nutrients. In summary, MF, the product of PBL-mediated conversion maize straw, demonstrated promise as an effective organic amendment for Cd immobilization and fertility improvement in alkaline soils.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aminu Inuwa Darma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China)
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China).
| | - Xudong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 2V3, Canada
| |
Collapse
|
12
|
Liu Q, Cui H, Yang W, Wang F, Liao H, Zhu Q, Qin S, Lu P. Soil conditioner improves soil properties, regulates microbial communities, and increases yield and quality of Uncaria rhynchophylla. Sci Rep 2024; 14:13398. [PMID: 38862626 PMCID: PMC11167052 DOI: 10.1038/s41598-024-64362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
Uncaria rhynchophylla is an important traditional herbal medicine in China, and the yield and quality of Uncaria rhynchophylla can be improved by suitable soil conditioners because of changing the soil properties. In this paper, Uncaria rhynchophylla associated alkaloids and soil microbial communities were investigated. The field experiment was set up with the following control group: (M1, no soil conditioner) and different soil conditioner treatment groups (M2, biomass ash; M3, water retention agent; M4, biochar; M5, lime powder and M6, malic acid). The results showed that M2 significantly increased the fresh and dry weight and the contents of isorhynchophylline, corynoxeine, isocorynoxeine, and total alkaloids. Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi were major bacterial phyla. Correlation analysis showed that fresh and dry weight was significantly positively correlated with Acidobacteria, while alkali-hydrolyzable nitrogen, phosphatase activity, fresh and dry weight, corynoxeine, and isocorynoxeine were significantly negatively correlated with Chloroflexi. The application of soil conditioner M2 increased the abundance of Acidobacteria and decreased the abundance of Chloroflexi, which contributed to improving the soil nutrient content, yield, and quality of Uncaria rhynchophylla. In summary, biomass ash may be a better choice of soil conditioner in Uncaria rhynchophylla growing areas.
Collapse
Affiliation(s)
- Qian Liu
- Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Honghao Cui
- Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
- Institute of Soil Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Wansheng Yang
- Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Fang Wang
- Guizhou Industry Polytechnic College, Guiyang, 550008, China
| | - Heng Liao
- Institute of Soil Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qing Zhu
- Institute of Soil Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Song Qin
- Institute of Soil Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Ping Lu
- Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
13
|
Xue W, Wen S, Chen X, Wang Y, Qian S, Wu Y, Ge R, Gao Y, Xu Y. How does the biochar-supported sulfidized nanoscale zero-valent iron affect the soil environment and microorganisms while remediating cadmium contaminated paddy soil? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:222. [PMID: 38849580 DOI: 10.1007/s10653-024-01995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/10/2024] [Indexed: 06/09/2024]
Abstract
In previous studies, iron-based nanomaterials, especially biochar (BC)-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC), have been widely used for the remediation of soil contaminants. However, its potential risks to the soil ecological environment are still unknown. This study aims to explore the effects of 3% added S-nZVI/BC on soil environment and microorganisms during the remediation of Cd contaminated yellow-brown soil of paddy field. The results showed that after 49 d of incubation, S-nZVI/BC significantly reduced physiologically based extraction test (PBET) extractable Cd concentration (P < 0.05), and increased the immobilization efficiency of Cd by 16.51% and 17.43% compared with S-nZVI and nZVI/BC alone, respectively. Meanwhile, the application of S-nZVI/BC significantly increased soil urease and sucrase activities by 0.153 and 0.446 times, respectively (P < 0.05), improving the soil environmental quality and promoting the soil nitrogen cycle and carbon cycle. The results from the analysis of the 16S rRNA genes indicated that S-nZVI/BC treatment had a minimal effect on the bacterial community and did not appreciably alter the species of the original dominant bacterial phylum. Importantly, compared to other iron-based nanomaterials, incorporating S-nZVI/BC significantly increased the soil organic carbon (OC) content and decreased the excessive release of iron (P < 0.05). This study also found a significant negative correlation between OC content and Fe(II) content (P < 0.05). It might originate from the reducing effect of Fe-reducing bacteria, which consumed OC to promote the reduction of Fe(III). Accompanying this process, the redistribution of Cd and Fe mineral phases in the soil as well as the generation of secondary Fe(II) minerals facilitated Cd immobilization. Overall, S-nZVI/BC could effectively reduce the bioavailability of Cd, increase soil nutrients and enzyme activities, with less toxic impacts on the soil microorganisms.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Simin Qian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yiyun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Rongrong Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
14
|
Yang K, Liu W, Lin HM, Chen T, Yang T, Zhang B, Wen X. Ecological and functional differences of abundant and rare sub-communities in wastewater treatment plants across China. ENVIRONMENTAL RESEARCH 2024; 243:117749. [PMID: 38061589 DOI: 10.1016/j.envres.2023.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
The microbial community in activated sludge is composed of a small number of abundant sub-community with high abundance and a large number of rare sub-community with limited abundance. Our knowledge regarding the ecological properties of both abundant and rare sub-communities in activated sludge is limited. This article presented an analysis of functional prediction, assembly mechanisms, and biogeographic distribution characteristics of abundant and rare sub-communities in 211 activated sludge samples from 60 wastewater treatment plants across China. Moreover, this study investigated the dominant factors influencing the community structure of these two microbial groups. The results showed that the functions associated with carbon and nitrogen cycling were primarily detected in abundant sub-community, while rare sub-community were primarily involved in sulfur cycling. Both microbial groups were mainly influenced by dispersal limitation, which, to some extent, resulted in a distance-decay relationship in their biogeographic distribution. Moreover, a higher spatial turnover rate of rare sub-communities (0.0887) suggested that spatial differences in microbial community structure among different WWTPs may mainly result from rare sub-community. Moreover, SEM showed that geographic locations affected rare sub-communities greatly, which agreed with their higher dispersal limitation and turnover rate. In contrast, influent characteristics showed stronger correlations with abundant sub-communities, suggesting that abundant sub-community may contribute more to the removal of pollutants. This study enhanced our understanding of abundant and rare microorganisms in activated sludge especially the role of rare species and provided scientific evidence for precise regulation and control of wastewater treatment plants.
Collapse
Affiliation(s)
- Kuo Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wei Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui-Min Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China.
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Li D, Zhang X, Chen J, Li J. Toxicity factors to assess the ecological risk for soil microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115867. [PMID: 38142592 DOI: 10.1016/j.ecoenv.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The toxicity factor (TF), a critical parameter within the potential ecological risk index (RI), is determined without accounting for microbial factors. It is considerable uncertainty exists concerning its validity for quantitatively assessing the influence of metal(loid)s on microorganisms. To evaluate the suitability of TF, we constructed microcosm experiments with varying RI levels (RI = 100, 200, 300, 500, and 700) by externally adding zinc (Zn), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and mercury (Hg) to uncontaminated soil (CK). Quantitative real-time PCR (qPCR) and high-throughput sequencing techniques were employed to measure the abundance and community of bacteria and fungi, and high-throughput qPCR was utilised to quantify functional genes associated with CNPS cycles. The results demonstrated that microbial diversity and function exhibited significant alterations (p < 0.05) in response to increasing RI levels, and the influences on microbial community structure, enzyme activity, and functional gene abundances were different due to the types of metal(loid)s treatments. At the same RI level, significant differences (p < 0.05) were discerned in microbial diversity and function across metal(loid) treatments, and these differences became more pronounced (p < 0.001) at higher levels. These findings suggest that TF may not be suitable for the quantitative assessment of microbial ecological risk. Therefore, we adjusted the TF by following three steps (1) determining the adjustment criteria, (2) deriving the initial TF, and (3) adjusting and optimizing the TF. Ultimately, the optimal adjusted TF was established as Zn = 1.5, Cr = 4.5, Cu = 6, Pb = 4.5, Ni = 5, Cd = 22, and Hg = 34. Our results provide a new reference for quantitatively assessing the ecological risks caused by metal(loid)s to microorganisms.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
16
|
Li X, Jeyakumar P, Bolan N, Huang L, Rashid MS, Liu Z, Wei L, Wang H. Biochar Derived from Urban Green Waste Can Enhance the Removal of Cd from Water and Reduce Soil Cd Bioavailability. TOXICS 2023; 12:8. [PMID: 38276721 PMCID: PMC10819508 DOI: 10.3390/toxics12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The beneficial utilization of potentially increasing urban green waste (UGW) is critical for sustainable urban development in China. In this study, UGW was pyrolyzed at different temperatures, and the resulting biochar was used to amend Cd-contaminated soils to grow cabbage. Our results showed that the Cd adsorption capacity of UGW-biochar was positively correlated with the surface area, O/C, and (O+N)/C value of biochar. Furthermore, UGW-biochar was incorporated into three Cd-contaminated soils, including one acidic soil and two neutral soils, to assess its impact on the availability of Cd. The most substantial reduction in the concentration of available Cd was observed in the acidic soil, of the three tested soils. In the neutral soils, a more substantial reduction was found in the heavily Cd-contaminated soil compared to the lightly Cd-contaminated soil. UGW-biochar amendments to the three Cd-contaminated soils resulted in an increase in the cabbage biomass in acidic soil, whereas in neutral soils, it increased in lightly contaminated soils but decreased in heavily contaminated soils. Additionally, the Cd bioaccumulation factor (BCF), translocation factor (TF), and removal efficiency (RE), as impacted by the biochar application, were calculated in the lightly Cd-contaminated soil-cabbage system. The BCF decreased from 5.84 to 3.80 as the dosage of the UGW-biochar increased from 0% to 3%, indicating that the UGW-biochar immobilized Cd and reduced its bioaccumulation in cabbage roots. Based on our investigations, UGW-biochar effectively immobilizes Cd by reducing its mobility and bioavailability in a lightly contaminated environment matrix.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture & Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Lianxi Huang
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Lan Wei
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China;
- Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
Meng Z, Huang S, Wu J, Lin Z. Competitive adsorption and immobilization of Cd, Ni, and Cu by biochar in unsaturated soils under single-, binary-, and ternary-metal systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131106. [PMID: 36907057 DOI: 10.1016/j.jhazmat.2023.131106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the competitive adsorption and immobilization of cadmium (Cd), nickel (Ni), and copper (Cu) by biochar in unsaturated soils under single-, binary-, and ternary-metal systems. The results showed that the immobilization effects by the soil itself were in the order of Cu > Ni > Cd, and the adsorption capacities of freshly contaminated heavy metals by biochar were in the order of Cd > Ni > Cu in unsaturated soils. The adsorption and immobilization of Cd by biochars in soils was weakened by competition more in the ternary-metal system than that in the binary-metal system; the competition with Cu caused a more significant weakening effect than that with Ni. For Cd and Ni, nonmineral mechanisms preferentially adsorbed and immobilized Cd and Ni compared to mineral mechanisms, but the contributions of the mineral mechanisms to the adsorption gradually increased and became dominant with increasing concentrations (at average percentages of 62.59%-83.30% and 41.38%-74.29%, respectively). However, for Cu, the contributions of the nonmineral mechanisms to Cu adsorption were always dominant (average percentages of 60.92%-74.87%) and gradually increased with increasing concentrations. This study highlighted that the types of heavy metals and coexistence should be focused when remediating heavy metal contamination in soils.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Xu H, Huang Y, Xiong X, Zhu H, Lin J, Shi J, Tang C, Xu J. Changes in soil Cd contents and microbial communities following Cd-containing straw return. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121753. [PMID: 37127235 DOI: 10.1016/j.envpol.2023.121753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Contamination of soil with cadmium (Cd) threatens food safety and human health. In general, crop straws from contaminated soils could accumulate considerable amounts of Cd. The addition of Cd-containing rice straw can have negative effects on soil environment. In this study, straws varying in Cd concentration were added to soil at a rate of 5% (w/w) to investigate the effects of Cd-containing straw on soil Cd dynamics and soil microbial communities. Results showed that large amounts of Cd, especially bioavailable Cd, were released into soil during the decomposition of Cd-containing straws. The addition of straws with 10, 20 and 40 mg kg-1 Cd increased total Cd in soils from 0.31 mg kg-1 to 0.89, 1.39 and 2.09 mg kg-1, respectively, exceeding the screening value of total Cd < 0.4 mg kg-1 for paddy soils of pH 5.5-6.5 according to Chinese Soil Environmental Quality Standards. Moreover, the addition of Cd-containing straw decreased alpha-diversity of bacterial and fungal communities compared to the clean straw. Indeed, changes in soil factors including pH, Eh, dissolved organic C and Cd level jointly reconstructed soil microbial communities. The addition of Cd-containing straw increased the relative abundance of bacterial species Acidobacteria and Proteobacteria but decreased that of Firmicutes. Meanwhile, it increased the relative abundance of fungal species Basidiomycota and Fusarium which were considered Cd-tolerant. This study revealed the potential environmental risk and the variation of microbial communities caused by increasing soil Cd bioavailability after direct application of Cd-containing rice straw to the field.
Collapse
Affiliation(s)
- Haojie Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xinquan Xiong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Hang Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences / La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Zhao XY, Zhang ZY, Huang YM, Feng FJ. Enhancing the effect of biochar ageing on reducing cadmium accumulation in Medicago sativa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160690. [PMID: 36481133 DOI: 10.1016/j.scitotenv.2022.160690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) application to farmland soil can reduce the mobility and bioavailability of Cd. Nevertheless, BC is prone to natural ageing in soil, which alters its structure, physicochemical properties, thereby affecting the immobilisation of Cd. We used dry-wet and freeze-thaw cycles to mimic the natural ageing of BC, and used adsorption experiments to explore the changes of Cd adsorption capacity of BC and aged BC (ABC). We conducted a pot experiment to investigate the effects of BC and ABC on soil biotic and abiotic factors, alfalfa growth, and Cd accumulation in agricultural soils with high and low Cd concentrations. The increase of specific surface area, pore size, oxygen containing functional groups and mineral composition leads to better adsorption capacity of ABC. The adsorption of Cd(II) by BC and ABC is mainly by monolayer adsorption and chemical adsorption. Applying BC and ABC to Cd-contaminated soil significantly increased the aboveground biomass and decreased the Cd accumulation by reducing the Cd bioconcentration factor in alfalfa. At high Cd levels, adding BC and ABC reduced the Cd content in alfalfa shoots by 32.8 % and 35.1 %, respectively; the fixing effect of ABC was better than that of BC. Adding BC and ABC significantly increased the microbial biomass and geometric mean of enzymes. BC addition increased soil pH by 0.32-0.36 units and cation exchange capacity (CEC) by 15.5 %. Adding BC and ABC significantly increased soil organic matter (SOM) by 5.7 % and 6.2 %, respectively. Random forest analysis showed that SOM, total organic carbon, and fluorescein diacetate hydrolase were important variables for Cd content in alfalfa shoots. Structural equation modelling showed that BC indirectly affected the Cd content in alfalfa shoots by affecting soil pH, CEC, SOM, microbial biomass, and microbial metabolic activity. BC has a long-term effect on alleviating Cd pollution in farmland.
Collapse
Affiliation(s)
- Xin-Yu Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhuo-Yun Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yu-Meng Huang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fu-Juan Feng
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
20
|
Sachdeva S, Kumar R, Sahoo PK, Nadda AK. Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120937. [PMID: 36608723 DOI: 10.1016/j.envpol.2022.120937] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.
Collapse
Affiliation(s)
- Saloni Sachdeva
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sector 62, Noida, 201309, Uttar Pradesh, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda, 151401, Punjab, India; Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| |
Collapse
|
21
|
Sun L, Zhang G, Li X, Zhang X, Hang W, Tang M, Gao Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023; 9:e12949. [PMID: 36820180 PMCID: PMC9938413 DOI: 10.1016/j.heliyon.2023.e12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
To investigate the chemical properties in the biochar-mediated transformation of soil cadmium (Cd) fractions, the effects of biochar applied at different pyrolysis temperatures on soil Cd-fractions, pH value, and soil organic matter (SOM) were studied through an in-lab incubation experiment on contaminated soil. The results showed that the dissolved organic carbon (DOC) of CsBC300 (biochar prepared at 300 °C) was significantly higher (up to 1.31 times) than that of CsBC600 (biochar prepared at 600 °C). However, CsBC600 was more aromatic. Due to the difference in pyrolysis temperatures, the Cd deactivation mechanism of CsBC300 and CsBC600 was mainly to provide a large amount of organic matter and aromatic functional groups to the soil, respectively. The addition of these two biochar types significantly reduced the acid-extracted Cd content, by 76.56-83.52% and 70.48-76.81%, respectively. Contrastingly, it increased the residual Cd content by 2.26-2.36 and 2.08-2.29 times, respectively, which promoted the Cd transformation from the unstable to the stable state. However, CsBC300 had slightly better deactivation effect than CsBC600 on the 120th day, which was due to the decrease of soil pH and the increased SOM content. These study results can provide a theoretical reference for the remediation of Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Lianglun Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Guoquan Zhang
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| | - Xinyu Li
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xinyu Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Wei Hang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China,Corresponding author.
| | - Yan Gao
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| |
Collapse
|
22
|
Zhu Y, Ge X, Wang L, You Y, Cheng Y, Ma J, Chen F. Biochar rebuilds the network complexity of rare and abundant microbial taxa in reclaimed soil of mining areas to cooperatively avert cadmium stress. Front Microbiol 2022; 13:972300. [PMID: 35983321 PMCID: PMC9378816 DOI: 10.3389/fmicb.2022.972300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the interactions between the soil microbial communities and species is critical in the remediation of heavy metal-contaminated soil. Biochar has been widely applied as a stabilizer in the in situ remediation of cadmium (Cd)-contaminated soils in mining areas. However, the rebuilding of the microbial taxa of rare and abundant species by biochar and their cooperative resistance to Cd stress remains elusive. In this pursuit, the present study envisaged the effects of two types of biochars viz., poplar bark biochar (PB) and thiourea-modified poplar bark biochar (TP) on the rare and abundant bacterial and fungal taxa by using pot experiments. The results demonstrated that the PB and TP treatments significantly reduced the leached Cd content, by 35.13 and 68.05%, respectively, compared with the control group (CK), in the reclaimed soil of the mining area. The application of biochar significantly improved the physicochemical properties like pH and Soil Organic Matter (SOM) of the soil. It was observed that TP treatment was superior to the PB and CK groups in increasing the diversity of the soil abundant and rare species of microbial taxa. Compared with the CK group, the application of PB and TP enhanced and elevated the complexity of the microbial networks of rare and abundant taxa, increased the number and types of network core microorganisms, reshaped the network core microorganisms and hubs, and boosted the microbial resistance to Cd stress. Our results indicate the response of rare and abundant microbial taxa to biochar application and the mechanism of their synergistic remediation of Cd-contaminated soil, thereby providing technical feasibility for in situ remediation of Cd-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, China
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Xiaoping Ge
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Liping Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- Liping Wang,
| | - Yunnan You
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Yanjun Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Jing Ma
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, China
- School of Public Administration, Hohai University, Nanjing, China
| | - Fu Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, China
- School of Public Administration, Hohai University, Nanjing, China
- *Correspondence: Fu Chen,
| |
Collapse
|