1
|
Castro-Riquelme CL, López-Maldonado EA, Ochoa-Terán A, Pina-Luis G, Nthunya Lebea N. Enhanced detection of pesticides: evaluating monocarbamoylcarboxylic acids modified with amines for glyphosate and dicamba sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126315. [PMID: 40319531 DOI: 10.1016/j.saa.2025.126315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
In this work a series of monocarbamoylcarboxylic acids (MCCAs) N-functionalized with different amines were evaluated to detect the pesticides glyphosate (Gly) and dicamba (Dic). The MCCAs have molar absorptivity coefficients (ε) three orders of magnitude higher than pesticides facilitating the measurements under UV-Vis spectroscopy. These compounds have the isolectric point (IEP) in the range of pH 3.04-4.82 and beyond are negative charged. The absorption properties of the compounds are pH-dependent due to the protonation and deprotonation of their molecules, the adsorption band shifts to a longer wavelength as the pH increases and in some ligands a hyperchromic effect is observed. The titration of MCCAs with a pesticide generates a change in the adsorption band and the sensitivity of the response is also pH-dependent. The sensitivity of MCCAs towards pesticides decreased at pH 5.0 and increased at pH 7.0 and 9.0 which is clearly influenced by the acid-base equilibriums in water. The response was more sensitive towards dicamba than with glyphosate, exhibiting linear concentration intervals up to 100 µM with 1a at pH 4 and 85 µM in compounds 2b and 2c at pH 7.0. The 1H NMR analysis in DMSO‑d6 of compounds 2a and 2c in presence of glyphosate and dicamba showed changes in the hydrogen signals indicating the interaction of these MCCAs with the pesticides in specific sites of their molecules. These MCCAs, proved to be promising molecular platforms for the optical detection of glyphosate and dicamba due to their pH-adjustable sensitivity and their ability to show significant electrostatic interactions, enabling pesticide detection over a wide concentration range.
Collapse
Affiliation(s)
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Baja California, Tijuana 22424, Mexico.
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana, Tijuana 22500 BC, Mexico.
| | - Georgina Pina-Luis
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana, Tijuana 22500 BC, Mexico
| | - N Nthunya Lebea
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersr, Private Bag X3, Johannesburg 2050, South Africa
| |
Collapse
|
2
|
Manetti M, Tomei MC. Anaerobic removal of contaminants of emerging concern in municipal wastewater: Eco-toxicological risk evaluation and strategic selection of optimal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168895. [PMID: 38042180 DOI: 10.1016/j.scitotenv.2023.168895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
In the last decades, the interest for anaerobic process as a mainstream treatment of municipal wastewater increased due to the development of high-rate anaerobic bioreactors able to achieve removal kinetics comparable to the aerobic ones. Moreover, they have the additional advantages of energy production, nutrient recovery and reduced excess sludge yield, which are interesting features in the frame of sustainability wastewater treatment goals. These appealing factors increased the research demand to evaluate the potential of the anaerobic removal for contaminants of emerging concern (CECs) in municipal wastewater. However, despite the growing interest for the subject, literature is still fragmentary and reviews are mainly focused on specific technologies and target compounds or groups of compounds. We propose this review with the main objectives of presenting the state of knowledge, the performances of anaerobic systems for CECs' removal and, more important, to give the reader guidelines for optimal treatment selection. In the first part, a general overview of the investigated technologies at different scale, with a special focus on the recently proposed enhancements, is presented. Collected data are analysed to select the target CECs and the analysis results employed to define the optimal technological solution for their removal. A first novelty element of the paper is the original procedure for contaminant selection consisting of a risk assessment tool for CECs, based on their frequency of detection, concentration and potential for biosorption in wastewater treatment plants. Data of selected target CECs are combined with compound and technology performance data to implement a flowchart tool to evaluate the optimal treatment strategy, which constitute another, even more important, novelty element of this study.
Collapse
Affiliation(s)
- Marco Manetti
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| |
Collapse
|
3
|
Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, Kamyab H, Pham CQ, Vo DVN, Chelliapan S. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J Biotechnol 2023; 369:14-34. [PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood. Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
Collapse
Affiliation(s)
- Bernard Chukwuemeka Ekeoma
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Leonard Nnamdi Ekeoma
- Department of Pharmacy, Nnamdi Azikiwe University, Agulu Campus, Anambra State, Nigeria
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Department of Chemistry, Ahmadu Bello University Zaria-Nigeria
| | | | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|