1
|
Li X, Wang L, Huang C, Hou R, Hou D. Long-term soil remediation using layered double hydroxides: Field evidence for simultaneous immobilization of both cations and oxyanions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125417. [PMID: 39615565 DOI: 10.1016/j.envpol.2024.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Layered double hydroxides (LDHs) have great potential for immobilizing potentially toxic elements in soil. Nevertheless, their practical effectiveness under field conditions remains largely unknown. In this study, we conducted a 2.5-year field trial using pristine Mg-Al LDHs, Ca-Al LDHs, and iron (Fe)-modified LDHs to simultaneously immobilize both oxyanions (including As and Sb) and cations (including Cd and Pb) in historically contaminated soil affected by mining activities since the 1950s. The immobilization performance of LDHs was examined using various batch tests, including water and DTPA extraction, and by measuring metal(loid) concentrations in Coriandrum sativum (coriander). We found that both pristine and Fe-modified LDHs showed promising initial immobilization performance 7 days after application, achieving significant reductions in DTPA-extractable concentrations of As, Sb, Cd, and Pb by 45.6%-68.3%, 55.4%-94.2%, 11.2%-50.9%, and 62.9%-64.9%, respectively, compared to the control soil without amendment. Notably, pristine LDHs showed diminished immobilization performance in the long term, while Fe-modified LDHs exhibited long-term stability over 2.5 years. A conditional probability-based model was used to depict long-term metal(loid) leaching characteristics in LDH-amended soils. Temporal changes in metal(loid) concentrations in the aboveground edible parts (namely, stems and leaves) of coriander corroborated well with DTPA extraction results. Coriander grown in Fe-modified LDH-amended soils had much lower metal(loid) concentrations compared to those grown in pristine LDH-amended soils. As a result, reductions of 35.1%-42.2% for As, 54.4%-66.2% for Sb, 8.5%-22.8% for Cd, and 56.0%-62.7% for Pb concentrations in coriander were still observed 2.5 years after soil amendment with Fe-modified LDHs. To the best of our knowledge, this is the first field-based evidence using LDHs to simultaneously stabilize both cations and oxyanions in soil. The findings support the potential of LDHs for long-term immobilization of metal(loid)s in soil.
Collapse
Affiliation(s)
- Xuanru Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Caide Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Hu L, Du YM, Liu R, Yang S, Tang H, Yin XZ, Xiao Q, Wang X, Wang H. Alkali metal cation adsorption-induced surface polarization in polymeric carbon nitride for enhanced photocatalytic hydrogen peroxide production. J Colloid Interface Sci 2025; 679:456-464. [PMID: 39368165 DOI: 10.1016/j.jcis.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Photocatalytic hydrogen peroxide (H2O2) generation on the catalyst surface from oxygen is an electron-demanding process, making the construction of an electron-rich surface highly advantageous. In this study, a localized electric field was observed on the surface of polymeric carbon nitride (g-C3N4) when alkali metal cations were adsorbed onto it. These fields effectively inhibited surface carrier recombination and extended their lifespan, thereby enhancing H2O2 production. As a result, g-C3N4 achieved a superior H2O2 yield of 2.25 mM after 1 h in a 0.25 M K+ solution, which was 2.06 times greater than that (1.09 mM) achieved in a pure solvent. Notably, the increase in photocatalytic efficiency showed a remarkable dependence on ion species. At low concentrations, H2O2 generation efficiency was in the order of Li+ < Na+ < K+ < Rb+ < Cs+. However, after optimizing the ion concentration, the highest H2O2 production was achieved in a solution containing K+ instead of Cs+. Molecular dynamics simulations and temperature-dependent photocatalysis experiments revealed that the synergistic interaction between adsorption energy and adsorption distance was crucial in governing the extent to which alkali metal cation adsorption enhanced g-C3N4 photocatalytic H2O2 production. This study provides theoretical insights for the design of materials for electron-demanding photocatalysis and aids in understanding variations in photocatalytic behavior in natural waters.
Collapse
Affiliation(s)
- Lijun Hu
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Yi-Meng Du
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Rui Liu
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Shisheng Yang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Hongliang Tang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Xue-Zan Yin
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Qianxiang Xiao
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hongqing Wang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
3
|
Ren S, Fu J, Liu G, Zhang H, Wang B, Yu J. Ultrasensitive detection of methylene blue by surface-enhanced Raman scattering (SERS) with Ag nanoparticle-decorated magnetic CoNi layered double hydroxides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1010-1020. [PMID: 39749836 DOI: 10.1039/d4ay01841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The unreasonable use of organic dye leads to excessive residues in environmental water, which seriously threatens human health and the natural environment. In this paper, a spherical flower-like magnetic Fe3O4@CoNi layered double hydroxide@silver nanoparticle (Fe3O4@CoNi LDH@Ag NPs) SERS substrate was successfully fabricated via electrostatic self-assembly and applied for the sensitive detection of methylene blue (MB) in environmental water. The rapid concentration and separation of the SERS substrate from the water sample could be achieved using an external magnet. The Fe3O4@CoNi LDH@Ag NPs could not only rapidly enrich the trace analytes because of their outstanding absorptive capacity but also effectively enrich the cationic dye molecules to the "hot spots" through electrostatic interactions, resulting in higher SERS selectivity. Excellent SERS performance was observed, which exhibited a high enhancement factor (EF) of 5.81 × 108 and a low detection limit (LOD) of 1 × 10-11 mol L-1 with R6G as the probe molecule, and also possessed exceptional reproducibility and stability for at least 28 days. The Fe3O4@CoNi LDH@Ag NPs were used to detect MB, which displayed wide linearity (1 × 10-10 to 1 × 10-4 mol L-1) and high recoveries (89.68-103.72%). This Fe3O4@CoNi LDH@Ag NP substrate offers easy separation and selective detection of cationic dyes, providing potential application for the detection of environmental contaminants.
Collapse
Affiliation(s)
- Shuxian Ren
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Jihong Fu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Guoqi Liu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Haipeng Zhang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Boshen Wang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Junli Yu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
4
|
Hagarová I, Andruch V. Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides. TOXICS 2024; 12:780. [PMID: 39590960 PMCID: PMC11598274 DOI: 10.3390/toxics12110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
This article provides an overview of the use of layered double hydroxides (LDHs) as effective sorbents in various extraction methods, including column-based solid-phase extraction (SPE), dispersive solid-phase extraction (DSPE), and magnetic solid-phase extraction (MSPE), for the separation and preconcentration of inorganic oxyanions of chromium, arsenic, and selenium. The primary focus is on enhancing the analytical performance of spectrometric detection techniques, particularly in terms of sensitivity and selectivity when analyzing low concentrations of target analytes in complex matrices. LDHs, which can be readily prepared and structurally modified with various substances, offer promising potential for the development of novel analytical methods. When used in analytical extraction procedures and following careful optimization of experimental conditions, the developed methods have yielded satisfactory results, as documented by studies reviewed in this paper. This review is intended to assist analytical chemists in scientific laboratories involved in developing new extraction procedures.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Vasil Andruch
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia;
| |
Collapse
|
5
|
Li M, Prévot V, You Z, Forano C. Highly selective and efficient Pb 2+ capture using PO 4-loaded 3D-NiFe layer double hydroxides derived from MIL-88A. CHEMOSPHERE 2024; 364:143070. [PMID: 39142393 DOI: 10.1016/j.chemosphere.2024.143070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Lead (Pb) contamination in water requires improved decontamination technologies. The addition of phosphate to precipitate Pb2+ is a widely used method for remediating Pb in soil and water, though it has certain limitations. This study focuses on novel 3D mesoporous layered double hydroxide (LDH) sorbents functionalized with phosphate anions for Pb2+ removal from contaminated waters. Our innovative strategy involves converting a sacrificial template metal-organic frameworks (MOFs) structure (MIL-88A(Fe)) into NixFe LDH, followed by an anion exchange reaction with phosphate anions. This process preserves the 3D microrod architecture of MIL-88A and prevents deleterious LDH particle aggregation. The synthesis results in stable microrod crystals, 1-2 μm long, composed of 3D assemblies of NixFe-PO4 LDH nanoplatelets with a specific surface area exceeding 110 m2/g. The novel LDH materials display fast adsorption kinetics (pseudo-second order model) and remarkably high Pb2+ removal performances (Langmuir isotherm model) with a capacity of 538 mg/g, surpassing other reported adsorbents. LDH-PO4 exhibits high selectivity for Pb2+ over competing ions like Ni2+ and Cd2+ (selectivity order is: Pb2+ > Ni2+ > Cd2+). Removal of Pb2+ from NixFeLDH/88A-PO4 involves various mechanisms, including surface complexation and surface precipitation of lead phosphate or lead hydroxide phases as revealed by structural characterization techniques.
Collapse
Affiliation(s)
- Mengwei Li
- School of Resource and Environmental Sciences, Wuhan University, China; Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Zhixiong You
- School of Resource and Environmental Sciences, Wuhan University, China.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Jafari Zadegan MS, Moosaei R, Choopani L, Salehi MM, Maleki A, Zare EN. Remediation of Safranin-O and Acid Fuchsin by Using Ti 3C 2 MXene /rGo-Cu 2O Nanocomposite: Preparation, Characterization, Isotherm, Kinetics and Thermodynamic Studies. ENVIRONMENTAL RESEARCH 2024; 258:119469. [PMID: 38936496 DOI: 10.1016/j.envres.2024.119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
In recent years, MXene has become one of the most intriguing two-dimensional layered (2Dl) materials extensively explored for various applications. In this study, a Ti3C2 MXene/rGo-Cu2O Nanocomposite (TGCNCs) was developed to eliminate Safranin-O effectively (SO) and Acid Fuchsin (AF) as cationic dyes from the aquatic environment. Multistep was involved in the preparation of the adsorbent system, including the Preparation of Ti3C2, after that, GO synthesis by the Humer method, followed by rGO production, then added CuSO4 to obtain a final Nanocomposite (NCs) called "TGCNCs". The structure of TGCNCs can be varied in several ways, including FTIR, SEM, TGA, Zeta, EDX, XRD, and BET, to affirm the efficacious preparation of TGCNCs. A novel adsorbent system was developed to remove SO and AF, both cationic dyes. Various adsorption conditions have been optimized through batch adsorption tests, including the pH of the solution (4-12), the effect of dosage (0.003-0.03 g), the impact of the contact time (5-30 min), and the effect of beginning dye concentration (25-250 mg/L). Accordingly, the TGCNCs exhibited excellent fitting for Freundlich isotherm mode, resulting in maximum AF and SO adsorption capacities of 909.09 and 769.23 mg.g-1. This research on adsorption kinetics suggests that a pseudo-second-order (PSO) model would fit well with the experimental data ( = 0.998 and = 0.990). It is evident from the thermodynamic parameters that adsorption is an endothermic process that is spontaneous and favourable. During the adsorption of SO and AF onto NCs, it is hypothesized that these molecules interact intramolecularly through stacking interactions, H-bond interactions, electrostatic interactions, and entrapment within the polymeric Poros structure nanocomposite. Regeneration studies lasting up to five cycles were the most effective for both organic dyes under study.
Collapse
Affiliation(s)
| | - Roya Moosaei
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran
| | - Leila Choopani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | | |
Collapse
|
7
|
Pereira L, Castillo V, Calero M, Blázquez G, Solís RR, Ángeles Martín-Lara M. Conversion of char from pyrolysis of plastic wastes into alternative activated carbons for heavy metal removal. ENVIRONMENTAL RESEARCH 2024; 250:118558. [PMID: 38412913 DOI: 10.1016/j.envres.2024.118558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
The valorization of post-consumer mixed plastics in pyrolysis processes represents an abundant reservoir of carbon that can be effectively converted into useful chars. This process not only holds appeal in terms of improving plastic waste concerns but also contributes to the reduction of greenhouse gas emissions, thus aligning with the principles of a circular economy paradigm. In this study, the char produced from the pyrolysis of post-consumer mixed plastic waste has been activated with Na2CO3, KOH, NaOH, and K2CO3 to improve the textural, structural, and composition characteristics, leading to improved adsorption capability. These characteristics were studied by N2 adsorption-desorption isotherms, scanning electron microscopy, elemental and immediate analysis, and X-ray photoelectron spectroscopy. The developed surface area (SBET) was 573, 939, 704 and 592 m2 g-1 for Na2CO3, KOH, NaOH and K2CO3 activated carbons, respectively. These activated chars (ACs) were tested for the adsorption of heavy metals in both synthetic waters containing Pb, Cd, and Cu and industrial wastewater collected at an agrochemical production plant. Na2CO3-AC was the best performing material. The metal uptake in synthetic waters using a batch set-up was 40, 13 and 12 mg g-1 for Pb, Cd and Cu. Experiments in a column set-up using Na2CO3-AC resulted in a saturation time of 290, 16, and 80 min for Pb, Cd, and Cu synthetic waters, respectively, and metal uptakes of 26.8, 4.1, and 7.9 mg g-1, respectively. The agrochemical effluents, containing mainly Cr, Cu, Mn, and Zn were tested in a plug-flow column. The metal uptake notably decreased compared to synthetic water due to a competition effect for active sites.
Collapse
Affiliation(s)
- Ledicia Pereira
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| | - Ventura Castillo
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| | - Mónica Calero
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain.
| | - Gabriel Blázquez
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain.
| | - Rafael R Solís
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| | - M Ángeles Martín-Lara
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| |
Collapse
|
8
|
Sun Y, Wang Z, Zhang S, Liu C, Xu Y. Preparation of composites with MgAl-LDH-modified commercial activated carbon for the quick removal of Cr(VI) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41032-41045. [PMID: 38842781 DOI: 10.1007/s11356-024-33820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
The problem of soil and water contamination caused by Cr(VI) discharged from the dyeing, electroplating, and metallurgical industries is becoming increasingly serious, posing a potentially great threat to the environment and public health. Therefore, it is crucial to develop a fast, efficient, and cost-effective adsorbent for remediating Cr-contaminated wastewater. In this work, MgAl-LDH/commercial-activated carbon nanocomposites (LDH-CACs) are prepared with hydrothermal. The effects of preparation and reaction conditions on the composite properties are first investigated, and then its adsorption behavior is thoroughly explored. Finally, a potential adsorption mechanism is proposed by several characterizations like SEM-EDS, XRD, FTIR, and XPS. The removal of Cr(VI) reaches 72.47% at optimal conditions, and the adsorption study demonstrates that LDH-CAC@1 has an extremely rapid adsorption rate and a maximum adsorption capacity of 116.7 mg/g. The primary removal mechanisms include adsorption-coupled reduction, ion exchange, surface precipitation, and electrostatic attraction. The reusability experiment illustrates that LDH-CAC@1 exhibits promising reusability. This study provides an effective adsorbent with a remarkably fast reaction, which has positive environmental significance for the treatment of Cr(VI) wastewater.
Collapse
Affiliation(s)
- Ying Sun
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Zexu Wang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Shijie Zhang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Chuyin Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
9
|
He H, Cheng Y, Qiu S, Sun L, Jin B, Yuan X. Construction and mechanistic insights of a novel ZnO functionalized rGO composite for efficient adsorption and reduction of Cr(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34607-34621. [PMID: 38705925 DOI: 10.1007/s11356-024-33585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
A series of ZnO decorated reduced graphene oxide (rGO) (ZnrGOx) with different doping ratios were synthesized by the alkaline hydrothermal method using graphene oxide (GO) and Zn(NO3)2·6H2O as precursors, and subsequently used for the adsorption study of Cr(VI) in water. The morphology, crystalline phase structure, and surface elemental properties of ZnrGOx composites were revealed by XRD, SEM, BET, FT-IR, and XPS characterizations. The results showed that ZnO nanoparticles can be clearly seen on the surface of layered rGO. Meanwhile, as the doping rate increased, the C = C double bonds were broken and more carboxylic acid groups formed in ZnrGOx. In addition, the ZnrGO0.1 composite had the most excellent adsorption performance and good stability, and reusability. The adsorption removal rate of Cr(VI) can reach 99%, and the maximum adsorption amount of Cr(VI) was 68.9655 mg/g in 3 h. The isothermal and kinetic model simulations showed that Cr(VI) adsorption on ZnrGO0.1 composite is a chemical adsorption process, spontaneous and endothermic. Based on the concentrations of different valence states of Cr in the solid and liquid phases, 40% of Cr(VI) was reduced to Cr(III) on the surface of ZnrGO0.1 composite. Moreover, the adsorption-reduction mechanisms of Cr(VI) on ZnrGO0.1 composite were further elucidated. The ZnrGO0.1 composite manifested great potential as an efficient adsorbent for Cr(VI) removal.
Collapse
Affiliation(s)
- Haixia He
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Yanhui Cheng
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Siwei Qiu
- Hubei Gedian Humanwell Pharmaceutical Co., Ltd, 436070, Gedian, China
| | - Lei Sun
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China.
| | - Bohua Jin
- Weifang Jiacheng Digital Material Co., Ltd, Weifang, 261000, China
| | - Xiangjuan Yuan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| |
Collapse
|
10
|
Sun R, Gao S, Zhang K, Cheng WT, Hu G. Recent advances in alginate-based composite gel spheres for removal of heavy metals. Int J Biol Macromol 2024; 268:131853. [PMID: 38679268 DOI: 10.1016/j.ijbiomac.2024.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The discharge of heavy metal ions from industrial wastewater into natural water bodies is a consequence of global industrialisation. Due to their high toxicity and resistance to degradation, these heavy metal ions pose a substantial threat to human health as they accumulate and amplify. Alginate-based composite gels exhibit good adsorption and mechanical properties, excellent biodegradability, and non-toxicity, making them environmentally friendly heavy metal ion adsorbents for water with promising development prospects. This paper introduces the basic properties, cross-linking methods, synthetic approaches, modification methods, and manufacturing techniques of alginate-based composite gels. The adsorption properties and mechanical strength of these gels can be enhanced through surface modification, multi-component mixing, and embedding. The main production processes involved are sol-gel and cross-linking methods. Additionally, this paper reviews various applications of alginate composite gels for common heavy metals, rare earth elements, and radionuclides and elucidates the adsorption mechanism of alginate composite gels. This study aimed to provide a reference for synthesising new, efficient, and environmentally friendly alginate-based adsorbents and to contribute new ideas and directions for addressing the issue of heavy metal pollution.
Collapse
Affiliation(s)
- Ruiyi Sun
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Sanshuang Gao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Kai Zhang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Wen-Tong Cheng
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
11
|
Fu M, Ma Q, Luo Y, Feng W, Wang X. Na/N Co-doped Seaweed Biochar Composite for Efficient Removal of Aqueous Pb(II) and Cu(II). Chem Asian J 2024:e202400163. [PMID: 38606886 DOI: 10.1002/asia.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
Pollution from harmful heavy metal ions such as Pb(II) and Cu(II) is causing serious environmental and health problems. In this study, Sodium and nitrogen co-doped porous carbon material (Na/NABc) was successfully prepared from seaweed, sodium hydroxide, and dicyandiamide. The experimental results showed that Na/NABc is an excellent adsorbent for the effective removal of Pb(II) and Cu(II) from water bodies. Specifically, 99.8% of Pb(II) and 64.6% Cu(II) (100 mg/L) were removed within 12 h using 10 mg Na/NABc(10%) at 25 °C. The adsorption of Pb(II) and Cu(II) in aqueous solution by Na/NABc(10%) was efficient and rapid in the first stage. The theoretical maximum removal capacities of Na/NABc for Pb(II) and Cu(II) were 959.6 and 299.1 mg/g, respectively. Pb(II) and Cu(II) ions were adsorbed quickly in the first 60 min, and the kinetics data were generally consistent with a pseudo-second-order model. Na/NABc(10%) had a large distribution coefficient for Pb(II) (8.38 L/mg) and Cu(II) (1.17 L/mg). The possible mechanisms were precipitation, Ion exchange, and surface complexation. The removal rate can reach about 70% after five cycles, and the release of sodium meets the standard. The results of this study demonstrate the potential applicability of Na/NABc(10%) for adsorption of heavy metals from aqueous solution.
Collapse
Affiliation(s)
- Meiyuan Fu
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Qianhui Ma
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Yun Luo
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Wen Feng
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Xianghui Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
12
|
Farhan A, Khalid A, Maqsood N, Iftekhar S, Sharif HMA, Qi F, Sillanpää M, Asif MB. Progress in layered double hydroxides (LDHs): Synthesis and application in adsorption, catalysis and photoreduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169160. [PMID: 38086474 DOI: 10.1016/j.scitotenv.2023.169160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays, have attracted significant attention in energy and environmental applications due to their exceptional physicochemical properties. These materials possess a unique structure with surface hydroxyl groups, tunable properties, and high stability, making them highly desirable. In this review, the synthesis and functionalization of LDHs have been explored including co-precipitation and hydrothermal methods. Furthermore, extensive research on LDH application in toxic pollutant removal has shown that modifying or functionalizing LDHs using materials such as activated carbon, polymers, and inorganics is crucial for achieving efficient pollutant adsorption, improved cyclic performance, as well as effective catalytic oxidation of organics and photoreduction. This study offers a comprehensive overview of the progress made in the field of LDHs and LDH-based composites for water and wastewater treatment. It critically discusses and explains both direct and indirect synthesis and modification techniques, highlighting their advantages and disadvantages. Additionally, this review critically discusses and explains the potential of LDH-based composites as absorbents. Importantly, it focuses on the capability of LDH and LDH-based composites in heterogeneous catalysis, including the Fenton reaction, Fenton-like reactions, photocatalysis, and photoreduction, for the removal of organic dyes, organic micropollutants, and heavy metals. The mechanisms involved in pollutant removal, such as adsorption, electrostatic interaction, complexation, and degradation, are thoroughly explained. Finally, this study outlines future research directions in the field.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Science and Technology, Hefei, China
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
13
|
Sun M, Wang XZ, Xiong RY, Chen X, Zhai LF, Wang S. High-performance biochar-loaded MgAl-layered double oxide adsorbents derived from sewage sludge towards nanoplastics removal: Mechanism elucidation and QSAR modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165971. [PMID: 37532050 DOI: 10.1016/j.scitotenv.2023.165971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Utilization of sewage sludge for the fabrication of environmental functional materials is highly desirable to achieve pollution mitigation and resource recovery. In the present work, we introduced a novel MgAl-layered double oxide (LDO)@biochar composite adsorbent in-situ fabricated from Al-rich sewage sludge, and its excellent application in nanoplastics adsorption. Initially, fifteen model contaminants with varied conjugate structures, hydrogen bonding and ionic properties were selected for an investigation of adsorption behavior and adsorption selectivity on LDO@biochar. Structural variation of LDO@biochar suggested reconstruction of the layered double hydroxide (LDH) during the adsorption process due to the "memory effect". Under the synergy of LDH and biochar, the contaminants were adsorbed via multiple adsorbent-adsorbate interactions, including anion exchange, electrostatic interaction, hydrogen bonding and π-π conjugation. Then, a quantitative structure-activity relationship (QSAR) model was constructed by integrating the number of hydrogen bond acceptors, polarity surface area, number of aromatic rings, and Fukui index f(-)x together to reflect the affinity of each contaminant to the adsorbent. Guided by the QSAR model, the negatively charged polystyrene nanoplastics with continuously conjugated aromatic rings were predicted to be effectively adsorbed on LDO@biochar. Experimental tests confirmed a great capacity of LDO@biochar towards the polystyrene nanoplastics, given the equilibrium adsorption capacity as high as 360 mg g-1 at 30-50 °C. This work not only opened up a new avenue for sustainable utilization of sewage sludge towards high-performance environmental functional materials, but also demonstrated the potential of the QSAR analysis as a rapid and accurate approach for guiding the application of an adsorbent to new emerging containments.
Collapse
Affiliation(s)
- Min Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian-Zhang Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ren-Ying Xiong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangying Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin-Feng Zhai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shaobin Wang
- School of Chemical Engineering, the University of Adelaide, Adelaide SA5005, Australia.
| |
Collapse
|
14
|
Hong X, Shi M, Ding Z, Ding C, Du P, Xia M, Wang F. Unveiling glutamic acid-functionalized LDHs: understanding the Cr(VI) removal mechanism from microscopic and macroscopic view points. Phys Chem Chem Phys 2023; 25:23519-23529. [PMID: 37655599 DOI: 10.1039/d3cp03359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Interlayer functionalization modulation is essential for modifying LDHs and improving their selectivity and adsorption capacity for target pollutants. In this work, Glu@NiFe-LDH was synthesized using a simple one-step hydrothermal method and tested for its ability to remove CrO42- from wastewater. The modification significantly increased the composite material's removal ability by 2-3 times, up to 98.36 mg g-1. The behavior of CrO42- adsorption on Glu@NiFe-LDH was further studied by adjusting the affecting factors (i.e., temperature, pH, contact time, initial concentration, and interfering substance), and the adsorption behavior was confirmed as a spontaneous and chemisorption process. And the result was that Glu@NiFe-LDH demonstrated high capacity, efficiency, stability, and selectivity for the adsorption of CrO42- in a single electrolyte and natural water containing competing anions. Furthermore, molecular dynamics simulations (NVT ensemble) were employed to further reveal the mechanism of glutamic acid modification on LDH at the microscopic scale. Additionally, the IRI analysis method revealed the mechanism of weak interaction between glutamic acid molecules and CrO42-. This study provides a detailed understanding of the intercalation mechanism involved in the amino acid modification of LDHs. It explains the adsorption mechanism of metal oxo-acid radicals by amino acid-modified LDHs from a theoretical perspective. The findings offer experiments and a theoretical basis for designing targeted adsorbents in the future.
Collapse
Affiliation(s)
- Xianyong Hong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Mingxing Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zhoutian Ding
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chao Ding
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ping Du
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
15
|
Fu Y, Fu X, Song W, Li Y, Li X, Yan L. Recent Progress of Layered Double Hydroxide-Based Materials in Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5723. [PMID: 37630014 PMCID: PMC10456663 DOI: 10.3390/ma16165723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Layered double hydroxides (LDHs) can be used as catalysts and adsorbents due to their high stability, safety, and reusability. The preparation of modified LDHs mainly includes coprecipitation, hydrothermal, ion exchange, calcination recovery, and sol-gel methods. LDH-based materials have high anion exchange capacity, good thermal stability, and a large specific surface area, which can effectively adsorb and remove heavy metal ions, inorganic anions, organic pollutants, and oil pollutants from wastewater. Additionally, they are heterogeneous catalysts and have excellent catalytic effect in the Fenton system, persulfate-based advanced oxidation processes, and electrocatalytic system. This review ends with a discussion of the challenges and future trends of the application of LDHs in wastewater treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (Y.F.); (X.F.); (W.S.); (Y.L.); (X.L.)
| |
Collapse
|
16
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. Functionally-designed floatable amino-modified ZnLa layered double hydroxides/cellulose acetate beads for tetracycline removal: Performance and mechanism. Carbohydr Polym 2023; 311:120752. [PMID: 37028855 DOI: 10.1016/j.carbpol.2023.120752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Huang Y, Luo X, Liu C, You S, Rad S, Qin L. Effective adsorption of Pb(ii) from wastewater using MnO 2 loaded MgFe-LD(H)O composites: adsorption behavior and mechanism. RSC Adv 2023; 13:19288-19300. [PMID: 37377869 PMCID: PMC10291440 DOI: 10.1039/d3ra03035k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Pb(ii) adsorption by MnO2/MgFe-layered double hydroxide (MnO2/MgFe-LDH) and MnO2/MgFe-layered metal oxide (MnO2/MgFe-LDO) materials was experimentally studied in lab-scale batches for remediation property and mechanism analysis. Based on our results, the optimum adsorption capacity for Pb(ii) was achieved at the calcination temperature of 400 °C for MnO2/MgFe-LDH. Langmuir and Freundlich adsorption isotherm models, pseudo-first-order and pseudo-second-order kinetics, Elovich model, and thermodynamic studies were used for exploring the Pb(ii) adsorption mechanism of the two composites. In contrast to MnO2/MgFe-LDH, MnO2/MgFe-LDO400 °C has a stronger adsorption capacity and the Freundlich adsorption isotherm model (R2 > 0.948), the pseudo-second-order kinetic model (R2 > 0.998), and the Elovich model (R2 > 0.950) provide great fits to the experimental data, indicating that the adsorption occurs predominantly via chemisorption. The thermodynamic model suggests that MnO2/MgFe-LDO400 °C is spontaneously heat-absorbing during the adsorption process. The maximum adsorption capacity of MnO2/MgFe-LDO400 °C for Pb(ii) was 531.86 mg g-1 at a dosage of 1.0 g L-1, pH of 5.0, and temperature of 25 °C. Through characterization analysis, the main mechanisms involved in the adsorption process were precipitation action, complexation with functional groups, electrostatic attraction, cation exchange and isomorphic replacement, and memory effect. Besides, MnO2/MgFe-LDO400 °C has excellent regeneration ability in five adsorption/desorption experiments. The above results highlight the powerful adsorption capacity of MnO2/MgFe-LDO400 °C and may inspire the development of new types of nanostructured adsorbents for wastewater remediation.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Environmental Science and Engineering, Guilin University of Technology Guilin 541004 China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology Guilin 541004 China
| | - Xiangping Luo
- College of Environmental Science and Engineering, Guilin University of Technology Guilin 541004 China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology Guilin 541004 China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology Guilin 541004 China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology Guilin 541004 China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology Guilin 541004 China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology Guilin 541004 China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology Guilin 541004 China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology Guilin 541004 China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology Guilin 541004 China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology Guilin 541004 China
| |
Collapse
|
18
|
Huang Y, Liu C, Qin L, Xie M, Xu Z, Yu Y. Efficient Adsorption Capacity of MgFe-Layered Double Hydroxide Loaded on Pomelo Peel Biochar for Cd (II) from Aqueous Solutions: Adsorption Behaviour and Mechanism. Molecules 2023; 28:molecules28114538. [PMID: 37299014 DOI: 10.3390/molecules28114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A novel pomelo peel biochar/MgFe-layered double hydroxide composite (PPBC/MgFe-LDH) was synthesised using a facile coprecipitation approach and applied to remove cadmium ions (Cd (II)). The adsorption isotherm demonstrated that the Cd (II) adsorption by the PPBC/MgFe-LDH composite fit the Langmuir model well, and the adsorption behaviour was a monolayer chemisorption. The maximum adsorption capacity of Cd (II) was determined to be 448.961 (±12.3) mg·g-1 from the Langmuir model, which was close to the actual experimental adsorption capacity 448.302 (±1.41) mg·g-1. The results also demonstrated that the chemical adsorption controlled the rate of reaction in the Cd (II) adsorption process of PPBC/MgFe-LDH. Piecewise fitting of the intra-particle diffusion model revealed multi-linearity during the adsorption process. Through associative characterization analysis, the adsorption mechanism of Cd (II) of PPBC/MgFe-LDH involved (i) hydroxide formation or carbonate precipitation; (ii) an isomorphic substitution of Fe (III) by Cd (II); (iii) surface complexation of Cd (II) by functional groups (-OH); and (iv) electrostatic attraction. The PPBC/MgFe-LDH composite demonstrated great potential for removing Cd (II) from wastewater, with the advantages of facile synthesis and excellent adsorption capacity.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Mingqi Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Zejing Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Youkuan Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
19
|
Sajid M, Ihsanullah I. Magnetic layered double hydroxide-based composites as sustainable adsorbent materials for water treatment applications: Progress, challenges, and outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163299. [PMID: 37030386 DOI: 10.1016/j.scitotenv.2023.163299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
Layered double hydroxides (LDHs) have shown exciting applications in water treatment because of their unique physicochemical properties, which include high surface areas, tunable chemical composition, large interlayer spaces, exchangeable content in interlayer galleries, and ease of modification with other materials. Interestingly, their surface, as well as the intercalated materials within the layers, play a role in the adsorption of the contaminants. The surface area of LDH materials can be further enhanced by calcination. The calcined LDHs can reattain their structural features upon hydration through the "memory effect" and may uptake anionic species within their interlayer galleries. Besides, LDH layers are positively charged within the aqueous media and can interact with specific contaminants through electrostatic interactions. LDHs can be synthesized using various methods, allowing the incorporation of other materials within the layers or forming composites that can selectively capture target pollutants. They have been combined with magnetic nanoparticles to improve their separation after adsorption and enhance adsorptive features in many cases. LDHs are relatively greener materials because they are mostly composed of inorganic salts. Magnetic LDH-based composites have been widely employed for the purification of water contaminated with heavy metals, dyes, anions, organics, pharmaceuticals, and oil. Such materials have shown interesting applications for removing contaminants from real matrices. Moreover, they can be easily regenerated and used for several adsorption-desorption cycles. Magnetic LDHs can be regarded as greener and sustainable because of several green aspects in their synthesis and reusability. We have critically reviewed their synthesis, applications, factors affecting their adsorption performance, and related mechanisms in this review. In the end, some challenges and perspectives are also discussed.
Collapse
Affiliation(s)
- Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Ihsanullah Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
20
|
Zhang R, Song C, Zhao Y, Zhang G, Xie L, Wei Z, Li H. A new strategy for treating Pb 2+ and Zn 2+ pollution with industrial waste derivatives Humin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121236. [PMID: 36758929 DOI: 10.1016/j.envpol.2023.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Metal pollution caused by industrial waste accumulation is a long-term and far-reaching problem. Humin (HM), as a highly condensed organic component insoluble in alkaline or water solution, is often discarded as humic acid industrial waste. However, the abundant active functional groups in HM reported by some researches make it possible for HM to remove metals. In this study, a waste reuse strategy was proposed to reduce the pressure of industrial metal pollution on the environment. HM was obtained from lignite waste residue. Scanning electron microscopy, energy spectrum and Fourier infrared spectroscopy, combined with the adsorption models were employed to reveal the mechanism of HM adsorption. The results showed that HM had multiple adsorption mechanism and high biological stability. The adsorption capacity of HM to Zn2+ and Pb2+ were 194.88 mg/g and 289.59 mg/g respectively. HM adsorbed Zn2+ mainly by physical multilayer adsorption. And the adsorption of Pb2+ by HM was mainly a monolayer chemical reaction, which depended on its active functional groups and the exchange of valence electrons. Notably, HM could simultaneously remove Pb2+ and Zn2+ and almost did not affect its original adsorption capacity to single ions. These results will provide a new strategy for the treatment of metal pollution in the future and alleviate the pressure of multiple metal pollution of the environment.
Collapse
Affiliation(s)
- Ruju Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Huiying Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
21
|
Runtti H, Luukkonen T, Tuomikoski S, Hu T, Lassi U, Kangas T. Removal of antimony from model solutions, mine effluent, and textile industry wastewater with Mg-rich mineral adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14139-14154. [PMID: 36149556 PMCID: PMC9908646 DOI: 10.1007/s11356-022-23076-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Naturally occurring layered double hydroxide mineral, brucite (BRU), was compared with hydromagnesite (HYD) and a commercial Mg-rich mineral adsorbent (trade name AQM PalPower M10) to remove antimony (Sb) from synthetic and real wastewaters. The BRU and HYD samples were calcined prior to the experiments. The adsorbents were characterized using X-ray diffraction, X-ray fluorescence, and Fourier transform infrared spectroscopy. Batch adsorption experiments were performed to evaluate the effect of initial pH, Sb concentration, adsorbent dosage, and contact time on Sb removal from synthetic wastewater, mine effluent, and textile industry wastewater. Several isotherm models were applied to describe the experimental results. The Sips model provided the best correlation for the BRU and M10. As for the HYD, three models (Langmuir, Sips, and Redlich-Peterson) fit well to the experimental results. The results showed that the adsorption process in all cases followed the pseudo-second-order kinetics. Overall, the most efficient adsorbent was the BRU, which demonstrated slightly higher experimental maximum adsorption capacity (27.6 mg g-1) than the HYD (27.0 mg g-1) or M10 (21.3 mg g-1) in the batch experiments. Furthermore, the BRU demonstrated also an efficient performance in the continuous removal of Sb from mine effluent in the column mode. Regeneration of adsorbents was found to be more effective under acidic conditions than under alkaline conditions.
Collapse
Affiliation(s)
- Hanna Runtti
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| | - Tero Luukkonen
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland.
| | - Sari Tuomikoski
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| | - Teija Kangas
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| |
Collapse
|
22
|
Li C, Jing H, Wu Z, Jiang D. Layered Double Hydroxides for Photo(electro)catalytic Applications: A Mini Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3525. [PMID: 36234654 PMCID: PMC9565588 DOI: 10.3390/nano12193525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 05/16/2023]
Abstract
Chemical energy conversion strategies by photocatalysis and electrocatalysis are promising approaches to alleviating our energy shortages and environmental issues. Due to the 2D layer structure, adjustable composition, unique thermal decomposition and memory properties, abundant surface hydroxyl, and low cost, layered double hydroxides (LDHs) have attracted extensive attention in electrocatalysis, photocatalysis, and photoelectrocatalysis. This review summarizes the main structural characteristics of LDHs, including tunable composition, thermal decomposition and memory properties, delaminated layer, and surface hydroxyl. Next, the influences of the structural characteristics on the photo(electro)catalytic process are briefly introduced to understand the structure-performance correlations of LDHs materials. Recent progress and advances of LDHs in photocatalysis and photoelectrocatalysis applications are summarized. Finally, the challenges and future development of LDHs are prospected from the aspect of structural design and exploring structure-activity relationships in the photo(electro)catalysis applications.
Collapse
Affiliation(s)
- Cheng Li
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| | - Huihua Jing
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410116, China
| | - Zhong Wu
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Denghui Jiang
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, China
- Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
23
|
30 Years of Vicente Rives’ Contribution to Hydrotalcites, Synthesis, Characterization, Applications, and Innovation. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrotalcite is the name of a mineral discovered in Sweden in 1842 whose formula is Mg6Al2(OH)16CO3·4H2O and presents a layered crystal structure that consists of positively charged hydroxide layers neutralized by interlayer anions as carbonate, also containing water molecules. The ease of their synthesis and the possibility of incorporating other layer cations and interlayer anions have made this type of layered double hydroxides (LDH) a group of very interesting materials for industry. In addition to LDH and due to the name of the most representative mineral, this group of compounds is commonly called hydrotalcite-like materials, or simply hydrotalcites. Another way of referring to them is as anionic clays because of their layered structure but, unlike classical clays, their layers are positive and their interlayers are anionic. The main fields of application of these solids comprise catalysis, catalyst support, anion scavengers, polymer stabilizers, drug carriers, or adsorbents. This paper briefly summarizes some of the work carried out by Professor Rives over more than thirty years, focused, among other topics, on the study of the synthesis, characterization, and applications of hydrotalcites. This research has led him to train many researchers, to collaborate with research groups around the world and to publish reference papers and books in this field. This contribution, written to be included in the Special Issue “A Themed Issue in Honor of Prof. Dr. Vicente Rives”, edited on the occasion of his retirement, only shows a small part of his scientific research and intends to value and recognize his cleverness and his enormous scientific and human quality.
Collapse
|
24
|
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes. Catalysts 2022. [DOI: 10.3390/catal12080816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Layered double hydroxides (LDH) or hydrotalcites (HT), together with their corresponding mixed oxides, continue to arouse a great deal of research interest [...]
Collapse
|