1
|
Căprărescu S, Tihan GT, Zgârian RG, Grumezescu AM, Lazau C, Bandas C, Atanase LI, Nicolae CA. Synthesis and Characterization of Cellulose Acetate/Polyethylene Glycol/Poly(Styrene)-b-Poly(4-Vinylpyridine) Membrane Embedded with Hydrotermaly Activated TiO 2 Nanoparticles for Waste-Waters Treatment by Membrane Processes. Polymers (Basel) 2025; 17:446. [PMID: 40006108 PMCID: PMC11859077 DOI: 10.3390/polym17040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigated the properties of a novel polymeric membrane based on cellulose acetate, polyethylene glycol/poly(styrene)-b-poly(4-vinylpyridine), and embedded with TiO2 nanoparticles (CA/PEG/PS154-b-P4VP381/TiO2 membrane) obtained by wet-phase inversion method. The TiO2 nanoparticles fabricated by a hydrothermal method were characterized by XRD, SEM, EDX, and UV-Vis analyses to determine the purity, morphology, and optical band gap energy. The prepared polymeric membranes with and without TiO2 nanoparticles (CA/PEG/PS154-b-P4VP381/TiO2 and CA/PEG/PS154-b-P4VP381 membranes) were characterized by FTIR, SEM, EDXS, and TGA to observe the effect of TiO2 nanoparticles added to the polymeric membrane matrix and to analyze the chemical structure, morphology, and thermal stability of the obtained polymeric membranes. The contact angle, SFE, water retention, and porosity were also determined. The results showed that adding the TiO2 nanoparticles into the polymeric membrane (CA/PEG/PS154-b-P4VP381/TiO2) significantly reduced the pore size and the water contact angle, increasing the water retention and the porosity. The lower value of the water contact angle of 15.57 ± 0.45° for the CA/PEG/PS154-b-P4VP381/TiO2 membrane indicates a pronounced hydrophilic character. The investigations performed showed that the CA/PEG/PS154-b-P4VP381/TiO2 membrane presents excellent properties and can be a promising material for water and waste-water treatment through membrane processes (e.g., electrodialysis, ultrafiltration, nanofiltration, reverse osmosis) in the future.
Collapse
Affiliation(s)
- Simona Căprărescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Grațiela Teodora Tihan
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Roxana Gabriela Zgârian
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Carmen Lazau
- National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara, Dr. A.P. Podeanu no. 144, 300569 Timisoara, Romania; (C.L.); (C.B.)
| | - Cornelia Bandas
- National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara, Dr. A.P. Podeanu no. 144, 300569 Timisoara, Romania; (C.L.); (C.B.)
| | - Leonard Ionuț Atanase
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania;
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| |
Collapse
|
2
|
Li F, An Y, Xue J, Fu H, Wang H, Cao P, Zhang M, Fei P, Liu M, Zhao F. Cellulose Acetate Membranes: Antibacterial Strategy and Application-A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409728. [PMID: 39679825 DOI: 10.1002/smll.202409728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Developing antibacterial and biodegradable cellulose acetate (CA) membrane materials is one of the main challenges in multiple application fields. CA membrane materials are widely used in gas purification, water purification, and biomedical fields due to their environmental friendliness, high chemical and mechanical stability, excellent processability, and low cost. However, antibacterial modification of CA membrane materials to enhance their utilization value in the application process has always been the direction of researchers' efforts. This review focuses on the preparation and application of antibacterial CA and its derivatives membranes, especially the types and introduction methods of antibacterial agents. First, a brief introduction of CA-based polymer membranes is presented, followed by an overview of the antibacterial agent types and their introduction methods, and antibacterial mechanisms. After that, various membranes prepared using CA-based polymers as the main matrix or as additives are discussed. Then, specific applications of antibacterial CA-based membrane materials in water purification, gas purification, biomedical, food packaging, and other fields are outlined.
Collapse
Affiliation(s)
- Fu Li
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Jinhong Xue
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hui Fu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hongbo Wang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Puzhi Cao
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, No. 398 Donghai, Quanzhou City, Fujian, 362000, P. R. China
| | - Fulai Zhao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
3
|
Khan SA, Rahman ZU, Javed A, Ahmad Z, Cai Z, Jiang O, Xu G. Natural biopolymers in the fabrication and coating of ureteral stent: An overview. BIOMATERIALS ADVANCES 2024; 165:214009. [PMID: 39216319 DOI: 10.1016/j.bioadv.2024.214009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Ureteral stents are indwelling medical devices that are most commonly used in treating different urinary tract complications like ureteral obstruction, kidney stones, and strictures, and allow normal urine flow from the kidney to the bladder. Tremendous work has been done in ureteral stent technology to meet the clinical demands, however, till-date a gold standard material for ureteral stents has not yet been developed. Many materials such as metal, and synthetic polymers have been published, however, the role of natural biopolymers has not yet been summarized and discussed. There is no detailed review published to explain the role of natural biopolymers in ureteral stent technology. This is the first review that explains and summarizes the role of natural polymer in ureter stent technology. In this review alginate and chitosan polymers are discussed in detail in the fabrications and coating of ureteral stents. It was summarized that alginate polymer alone or in combination with other polymers have been successfully used by many researchers for the manufacturing of ureteral stents with satisfactory results in vitro, in vivo, and clinical trials. However, alginate is rarely used to coat the surface of ureteral stent. On the other hand, only two reports are available on chitosan polymers for the manufacturing of ureteral stents, however, chitosan is largely used to coat the existing ureteral stents owing to their good antibacterial characteristics. Coating procedures can inhibit encrustation and biofilm formation. Nevertheless, the lack of antibacterial efficiency and inadequate coating limit their applications, however, natural biopolymers like chitosan showed significant promises in coating. Overall, the renewable nature, abundant, biocompatible, and biodegradable potential of natural polymer can be established with significant aspects as the ideal ureteral stent. To fully utilize the potential of the natural biopolymers in the ureteral stent design or coatings, an in-depth study is required to understand and identify their performance both in vitro and in vivo in the urinary tract.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Aimen Javed
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Zhiduan Cai
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Ouyang Jiang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| |
Collapse
|
4
|
Jing L, Shi T, Chang Y, Meng X, He S, Xu H, Yang S, Liu J. Cellulose-based materials in environmental protection: A scientometric and visual analysis review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172576. [PMID: 38649055 DOI: 10.1016/j.scitotenv.2024.172576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
As sustainable materials, cellulose-based materials have attracted significant attention in the field of environmental protection, resulting in the publication of numerous academic papers. However, there is a scarcity of literature that involving scientometric analysis within this specific domain. This review aims to address this gap and highlight recent research in this field by utilizing scientometric analysis and a historical review. As a result, 21 highly cited articles and 10 mostly productive journals were selected out. The scientometric analysis reveals that recent studies were objectively clustered into five interconnected main themes: extraction of cellulose from raw materials and its degradation, adsorption of pollutants using cellulose-based materials, cellulose-acetate-based membrane materials, nanocellulose-based materials, and other cellulose-based materials such as carboxymethyl cellulose and bacterial cellulose for environmental protection. Analyzing the distribution of author keywords and thoroughly examining relevant literature, the research focuses within these five themes were summarized. In the future, the development of eco-friendly and cost-effective methods for extracting and preparing cellulose and its derivatives, particularly nanocellulose-based materials, remains an enduring pursuit. Additionally, machine learning techniques holds promise for the advancement and application of cellulose-based materials. Furthermore, there is potential to expand the research and application scope of cellulose-based materials for environmental protection.
Collapse
Affiliation(s)
- Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tianyu Shi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yulung Chang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Xingliang Meng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuai He
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Hang Xu
- School of Material Science & Chemical Engineering, Harbin University of Science and Technology, Harbin, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jia Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
5
|
Liu L, Wang Y, Liu Y, Wang J, Zheng C, Zuo W, Tian Y, Zhang J. Insight into key interactions between diverse factors and membrane fouling mitigation in anaerobic membrane bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123750. [PMID: 38467364 DOI: 10.1016/j.envpol.2024.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have garnered considerable attention as a low-energy and low-carbon footprint treatment technology. With an increasing number of scholars focusing on AnMBR research, its outstanding performance in the field of water treatment has gradually become evident. However, the primary obstacle to the widespread application of AnMBR technology lies in membrane fouling, which leads to reduced membrane flux and increased energy demand. To ensure the efficient and long-term operation of AnMBRs, effective control of membrane fouling is imperative. Nevertheless, the interactions between various fouling factors are complex, making it challenging to predict the changes in membrane fouling. Therefore, a comprehensive analysis of the fouling factors in AnMBRs is necessary to establish a theoretical basis for subsequent membrane fouling control in AnMBR applications. This review aims to provide a thorough analysis of membrane fouling issues in AnMBR applications, particularly focusing on fouling factors and fouling control. By delving into the mechanisms behind membrane fouling in AnMBRs, this review offers valuable insights into mitigating membrane fouling, thus enhancing the lifespan of membrane components in AnMBRs and identifying potential directions for future AnMBR research.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongxiao Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinghui Wang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Chengzhi Zheng
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Rashid KT, Akram N, Zia KM, Usman M, Munawar T. Novel enrichment in biobased monomers of waterborne polyurethane dispersions as a textile finishing agent for poly-cotton fabrics. Int J Biol Macromol 2024; 257:128674. [PMID: 38070799 DOI: 10.1016/j.ijbiomac.2023.128674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
This study introduces a novel biobased textile finishing agent synthesized as waterborne polyurethane dispersions (FCCB-WPUDs), utilizing bio-based monomers like fenugreek oil-based polyol, corn oil-derived emulsifier, and cellulose acetate butyrate (CAB) chain extender. The FCCB-WPUDs were prepared through the prepolymer polymerization method and characterized using FTIR, TGA, DMA, SEM, DLS, and swelling tests. Their application to poly-cotton fabrics significantly improved various fabric properties. The enhancements included increased washing fastness (from 3/4 ± 0.01 to 4 ± 0.02 for dyed and 3 ± 0.02 to 4/5 ± 0.02 for printed fabrics), rubbing fastness (from 3 ± 0.02 to 4/5 ± 0.03 for dyed and 4 ± 0.02 to 4/5 ± 0.03 for printed fabrics), and perspiration fastness (from 3 ± 0.02 to 4 ± 0.03 for acidic dyed and 3/4 ± 0.02 to 4 ± 0.02 for alkaline printed fabrics). Additionally, tear strengths improved significantly (from 13.66 ± 0.04 N/m to 20.53 ± 0.06 N/m for warp dyed and 10.85 ± 0.06 N/m to 15.14 ± 0.06 N/m for warp printed fabrics), along with tensile strengths (from 327 ± 5.38 N/m to 361 ± 3.26 N/m for warp dyed and 357 ± 5.34 N/m to 449 ± 4.90 N/m for warp printed fabrics). These improvements correlated with increasing CAB moles as a chain extender. This research presents a cost-effective and simple biobased method for textile finishing, offering an alternative to petrochemical-based monomers in conventional WPUD preparation.
Collapse
Affiliation(s)
- Khawaja Taimoor Rashid
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tanzeel Munawar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Chinglenthoiba C, Mahadevan G, Zuo J, Prathyumnan T, Valiyaveettil S. Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:257. [PMID: 38334528 PMCID: PMC10856359 DOI: 10.3390/nano14030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Micro- and nanoparticles of plastic waste are considered emerging pollutants with significant environmental and health impacts at high concentrations or prolonged exposure time. Here we report the synthesis and characterization of a known metal-organic framework (MOF) using terephthalic acid (TPA) recovered from the hydrolysis of polyethylene terephthalate (PET) bottle waste. This approach adds value to the existing large amounts of bottle waste in the environment. Fully characterized zinc-TPA MOF (MOF-5) was used for the extraction and removal of engineered polyvinyl chloride (PVC) and polymethylmethacrylate (PMMA) nanoparticles from water with a high efficiency of 97% and 95%, respectively. Kinetic and isotherm models for the adsorption of polymer nanoparticles (PNPs) on the MOF surface were investigated to understand the mechanism. The Qmax for PVC and PMMA NPs were recorded as 56.65 mg/g and 33.32 mg/g, respectively. MOF-5 was characterized before and after adsorption of PNPs on the surface of MOF-5 using a range of techniques. After adsorption, the MOF-5 was successfully regenerated and reused for the adsorption and removal of PNPs, showing consistent results for five adsorption cycles with a removal rate of 83-85%. MOF-5 was characterized before and after adsorption of PNPs on the surface using a range of techniques. The MOF-5 with PNPs on the surface was successfully regenerated and reused for the adsorption and removal of polymer nanoparticles, showing consistent results for five extraction cycles. As a proof of concept, MOF-5 was also used to remove plastic particles from commercially available body scrub gel solutions. Such methods and materials are needed to mitigate the health hazards caused by emerging micro- and nanoplastic pollutants in the environment.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
8
|
Melinte V, Culica ME, Chibac-Scutaru AL. Cellulose acetate/polyurethane blend as support matrix with high optical transparency and improved mechanical properties for photocatalyst CeO 2 nanoparticles immobilization. Int J Biol Macromol 2023; 251:126210. [PMID: 37579894 DOI: 10.1016/j.ijbiomac.2023.126210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Advanced manufacturing technologies for efficient catalytic materials have triggered the rational design of catalysts as well as extensive investigation into preparative methodologies. Herein, we report the preparation of new versatile cellulose acetate/polyurethane (CA/PU) blends for efficient immobilization of CeO2 nanoparticles, the appropriate composition of polymer mixture being chosen after rigorous analysis (SEM, FTIR, optical, mechanical). The band gap energy for hybrid films ranged between 3.02 eV and 2.05 eV, the lowest value being measured for the film with Co-doped CeO2 NPs (B3 film). The best results in photodegradation of methylene blue under visible-light irradiation was attained after 50 min for B3 film (rate constant k = 45.34× 10-3 min-1), while the total mineralization of MB in the same conditions as evaluated by HPLC-ESI MS and TOC analyses was achieved after 90 min. Effect of co-ions (SO42-, Cl- or NO3-) on photocatalytic performance was studied, and scavenger tests were used to identify the active species involved in the photocatalytic mechanism. Also, the photocatalytic efficiency of B3 sample was tested for rhodamine B, metronidazole and 4-nitrophenol degradation. Evaluation of the stability and integrity of hybrid film after 5 catalysis cycles reveal that the photocatalytic potential is retained with no substantial structural changes.
Collapse
Affiliation(s)
- Violeta Melinte
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Madalina Elena Culica
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Andreea Laura Chibac-Scutaru
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
9
|
Puri N, Gupta A. Water remediation using titanium and zinc oxide nanomaterials through disinfection and photo catalysis process: A review. ENVIRONMENTAL RESEARCH 2023; 227:115786. [PMID: 37004858 DOI: 10.1016/j.envres.2023.115786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Various pesticides and organic compounds generated as a result of rapid industrialization and pharmaceutical companies pose a major threat to the environment. Novel photocatalysts based on zinc oxide and titanium oxide exhibit great potential towards absorption of these organic pollutants from wastewater. The photocatalysts possess various extraordinary properties like photocatalytic degradation potential, non-toxic and high stability. However, several limitations are also associated with the applications of these photocatalysts like poor affinity, particle agglomeration, high band gap and recovery issues. Hence, optimization is required to enhance their efficiency and at the same time make them cost effective and sustainable. The review covers the mechanism for water treatment, limitations and development of different modification strategies that improve the removal efficiency of titanium and zinc oxide based photocatalysts. Thus, further research in the field of photocatalysts can be encouraged for carrying out water remediation.
Collapse
Affiliation(s)
- Nidhi Puri
- Department of Applied Science and Humanities, Lloyd Institute of Engineering & Technology, Greater Noida, 201307, Uttar Pradesh, India
| | - Anjali Gupta
- School of Basic and Applied Science, Galgotias University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhou T, Zhao J, He X, Shi L, Wen L. Effect of brush roughness on volume charge density. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Salahshoori I, Asghari M, Namayandeh Jorabchi M, Wohlrab S, Rabiei M, Raji M, Afsari M. Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering through polyurethane mixed matrix membranes: experimental investigations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
12
|
Goh PS, Samavati Z, Ismail AF, Ng BC, Abdullah MS, Hilal N. Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:448. [PMID: 36770409 PMCID: PMC9920479 DOI: 10.3390/nano13030448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 05/27/2023]
Abstract
Membrane technology has become increasingly popular and important for separation processes in industries, as well as for desalination and wastewater treatment. Over the last decade, the merger of nanotechnology and membrane technology in the development of nanocomposite membranes has emerged as a rapidly expanding research area. The key motivation driving the development of nanocomposite membranes is the pursuit of high-performance liquid separation membranes that can address the bottlenecks of conventionally used polymeric membranes. Nanostructured materials in the form of zero to three-dimensions exhibit unique dimension-dependent morphology and topology that have triggered considerable attention in various fields. While the surface hydrophilicity, antibacterial, and photocatalytic properties of TiO2 are particularly attractive for liquid separation membranes, the geometry-dependent properties of the nanocomposite membrane can be further fine-tuned by selecting the nanostructures with the right dimension. This review aims to provide an overview and comments on the state-of-the-art modifications of liquid separation membrane using TiO2 as a classical example of multidimensional nanomaterials. The performances of TiO2-incorporated nanocomposite membranes are discussed with attention placed on the special features rendered by their structures and dimensions. The innovations and breakthroughs made in the synthesis and modifications of structure-controlled TiO2 and its composites have enabled fascinating and advantageous properties for the development of high-performance nanocomposite membranes for liquid separation.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zahra Samavati
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
13
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
14
|
Ammendolia MG, De Berardis B. Nanoparticle Impact on the Bacterial Adaptation: Focus on Nano-Titania. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3616. [PMID: 36296806 PMCID: PMC9609019 DOI: 10.3390/nano12203616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (nano-titania/TiO2 NPs) are used in different fields and applications. However, the release of TiO2 NPs into the environment has raised concerns about their biosafety and biosecurity. In light of the evidence that TiO2 NPs could be used to counteract antibiotic resistance, they have been investigated for their antibacterial activity. Studies reported so far indicate a good performance of TiO2 NPs against bacteria, alone or in combination with antibiotics. However, bacteria are able to invoke multiple response mechanisms in an attempt to adapt to TiO2 NPs. Bacterial adaption arises from global changes in metabolic pathways via the modulation of regulatory networks and can be related to single-cell or multicellular communities. This review describes how the impact of TiO2 NPs on bacteria leads to several changes in microorganisms, mainly during long-term exposure, that can evolve towards adaptation and/or increased virulence. Strategies employed by bacteria to cope with TiO2 NPs suggest that their use as an antibacterial agent has still to be extensively investigated from the point of view of the risk of adaptation, to prevent the development of resistance. At the same time, possible effects on increased virulence following bacterial target modifications by TiO2 NPs on cells or tissues have to be considered.
Collapse
|
15
|
Nickel Nanoparticles: Applications and Antimicrobial Role against Methicillin-Resistant Staphylococcus aureus Infections. Antibiotics (Basel) 2022; 11:antibiotics11091208. [PMID: 36139986 PMCID: PMC9495148 DOI: 10.3390/antibiotics11091208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved vast antibiotic resistance. These strains contain numerous virulence factors facilitating the development of severe infections. Considering the costs, side effects, and time duration needed for the synthesis of novel drugs, seeking efficient alternative approaches for the eradication of drug-resistant bacterial agents seems to be an unmet requirement. Nickel nanoparticles (NiNPs) have been applied as prognostic and therapeutic cheap agents to various aspects of biomedical sciences. Their antibacterial effects are exerted via the disruption of the cell membrane, the deformation of proteins, and the inhibition of DNA replication. NiNPs proper traits include high-level chemical stability and binding affinity, ferromagnetic properties, ecofriendliness, and cost-effectiveness. They have outlined pleomorphic and cubic structures. The combined application of NiNPs with CuO, ZnO, and CdO has enhanced their anti-MRSA effects. The NiNPs at an approximate size of around 50 nm have exerted efficient anti-MRSA effects, particularly at higher concentrations. NiNPs have conferred higher antibacterial effects against MRSA than other nosocomial bacterial pathogens. The application of green synthesis and low-cost materials such as albumin and chitosan enhance the efficacy of NPs for therapeutic purposes.
Collapse
|
16
|
Afzal A, Rafique MS, Iqbal SS, Rafique M. Deportment of cobalt bismuth nanoferrites in Kevlar‐supported c
ellulose acetate
membranes for heavy metal‐salts rejection profile. J Appl Polym Sci 2022. [DOI: 10.1002/app.52962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amina Afzal
- Physics Department University of Engineering and Technology (UET) Lahore Pakistan
| | | | - Sadia Sagar Iqbal
- Department of Physics The University of Lahore (UOL) Lahore Pakistan
| | | |
Collapse
|