1
|
Yu P, Xing J, Tang J, Wang Z, Zhang C, Wang Q, Xiao X, Huang W. Polyethyleneimine-modified iron-doped birnessite as a highly stable adsorbent for efficient arsenic removal. J Colloid Interface Sci 2024; 661:164-174. [PMID: 38295698 DOI: 10.1016/j.jcis.2024.01.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Remediation of arsenic contamination is of great importance given the high toxicity and easy mobility of arsenic species in water and soil. This work reports a new and stable adsorbent for efficient elimination of arsenic by coating polyethyleneimine (PEI) molecules onto the surface of iron-doped birnessite (Fe-Bir). Characterization results of surface microstructure and crystalline feature (scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS), etc.) suggest that Fe-Bir/PEI possesses a fine particle structure, inhibiting the agglomeration of birnessite-typed MnO2 and offering abundant active sites for arsenic adsorption. Fe-Bir/PEI is capable of working in a wide pH range from 3 to 11, with an efficient removal capacity of 53.86 mg/g at initial pH (pH0) of 7. Meanwhile, commonly coexisting anions (NO3-, SO42-, and Cl-) and cations (Na+, K+, Ca2+ and Mg2+) pose no effect on the arsenic removal performance of Bir/PEI. Fe-Bir/PEI exhibits a good reusability for arsenic removal with low Mn and Fe ions leaching after 5 cycles. Besides, Fe-Bir/PEI possesses efficient remediation capability in simulated As-contaminated soil. The modification of PEI in Fe-Bir/PEI can adsorb newly formed As(V), which is impossible for the adsorbent without PEI. Further, the arsenic removal mechanism of Fe-Bir/PEI is revealed with redox effect, electrostatic attraction and hydrogen bonding.
Collapse
Affiliation(s)
- Peng Yu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junying Xing
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Zhiguo Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chun Zhang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiongchao Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark.
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Ji H, Abdalkarim SYH, Chen X, Chen X, Lu W, Chen Z, Yu HY. Deep insights into biodegradability mechanism and growth cycle adaptability of polylactic acid/hyperbranched cellulose nanocrystal composite mulch. Int J Biol Macromol 2024; 254:127866. [PMID: 37939769 DOI: 10.1016/j.ijbiomac.2023.127866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The widespread use of petroleum-based plastic mulch in agriculture has accelerated white and microplastic pollution while posing a severe agroecological challenge due to its difficulty in decomposing in the natural environment. However, endowing mulch film with degradability and growth cycle adaptation remains elusive due to the inherent non-degradability of petroleum-based plastics severely hindering its applications. This work reports polylactic acids hyperbranched composite mulch (PCP) and measured biodegradation behavior under burial soil, seawater, and ultraviolet (UV) aging to understand the biodegradation kinetics and to increase their sustainability in the agriculture field. Due to high interfacial interactions between polymer and nanofiler, the resultant PCP mulch significantly enhances crystallization ability, hydrophilicity, and mechanical properties. PCP mulch can be scalable-manufactured to exhibit modulated degradation performance under varying degradation conditions and periods while concurrently enhancing crop growth (wheat). Thus, such mulch with excellent performance can reduce labor costs and the environmental impact of waste mulch disposal to replace traditional mulch for sustainable agricultural production.
Collapse
Affiliation(s)
- Haibin Ji
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuefei Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Weidong Lu
- Hangzhou Xin Guang Plastics Co., Ltd., Hangzhou 310018, China
| | - Zhiming Chen
- Zhejiang Hisun Biomaterials Co., Ltd., Taizhou 318000, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua. University, 2999 Renmin North Road, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
3
|
Mou Y, Bai X, Ma H, Li T, Zhao Y, Wu T, Zhang Y, Qu H, Kong H, Wang X, Zhao Y. Protective effect of carbon dots derived from scrambled Coptidis Rhizoma against ulcerative colitis in mice. Front Mol Biosci 2023; 10:1253195. [PMID: 37711388 PMCID: PMC10498776 DOI: 10.3389/fmolb.2023.1253195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction: Ulcerative colitis (UC) is a chronic and progressive inflammatory disease of the intestines. The primary symptoms, such as bloody diarrhea, can result in weight loss and significantly diminish the patient's quality of life. Despite considerable research endeavors, this disease remains incurable. The scrambled Coptidis Rhizoma (SCR) has a rich historical background in traditional Chinese medicine as a remedy for UC. Drawing from a wealth of substantial clinical practices, this study is focused on investigating the protective effects and underlying mechanisms of the active component of SCR, namely SCR-based carbon dots (SCR-CDs), in the treatment of UC. Methods: SCR-CDs were extracted and isolated from the decoction of SCR, followed by a comprehensive characterization of their morphological structure and functional groups. Subsequently, we investigated the effects of SCR-CDs on parameters such as colonic length, disease activity index, and histopathological architecture using the dextran sulfate sodium (DSS)-induced colitis mice model. Furthermore, we delved into the assessment of key aspects, including the expression of intestinal tight junction (TJ) proteins, inflammatory cytokines, oxidative stress markers, and gut microbial composition, to unravel the intricate mechanisms underpinning their therapeutic effects. Results: SCR-CDs displayed a consistent spherical morphology, featuring uniform dispersion and diameters ranging from 1.2 to 2.8 nm. These SCR-CDs also exhibited a diverse array of surface chemical functional groups. Importantly, the administration of SCR-CDs, particularly at higher dosage levels, exerted a noteworthy preventive influence on colonic shortening, elevation of the disease activity index and colonic tissue impairment caused by DSS. These observed effects may be closely associated with the hygroscopic capability and hemostatic bioactivity inherent to SCR-CDs. Concurrently, the application of SCR-CDs manifested an augmenting impact on the expression of intestinal TJ proteins, concomitantly leading to a significant reduction in inflammatory cell infiltration and amelioration of oxidative stress. Additionally, SCR-CDs treatment facilitated the restoration of perturbed gut microbial composition, potentially serving as a fundamental mechanism underlying their observed protective effects. Conclusion: This study demonstrates the significant therapeutic potential of SCR-CDs in UC and provides elucidation on some of their mechanisms. Furthermore, these findings hold paramount importance in guiding innovative drug discovery for anti-UC agents.
Collapse
Affiliation(s)
- Yanfang Mou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingjie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Vidal E, Alexis F, Camiña JM, Garcia CD, Whitehead DC. Removal of metals and inorganics from rendered fat using polyamine-modified cellulose nanocrystals. RSC SUSTAINABILITY 2023; 1:1184-1191. [PMID: 38013677 PMCID: PMC10399612 DOI: 10.1039/d3su00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/10/2023] [Accepted: 06/09/2023] [Indexed: 11/29/2023]
Abstract
Meatpacking and poultry operations produce an enormous amount of co-products including offal, fat, blood, feathers etc. that are collected and processed by the rendering industry into value-added materials such as various protein meals and rendered fat products. Rendered fats (mainly composed of triglycerides from the adipose tissue of animals or used cooking oil from the restaurant industry) are sold for a variety of applications including animal feed formulations. Nonetheless, in the current context of energy scarcity, their use as feedstocks for the generation of renewable fuels including biodiesel and renewable diesel represents a growing market. The diverse composition of the source material can impose significant challenges in terms of compliance, requiring the control (and reduction) of the concentration of elements such as phosphorus, sulfur, calcium, magnesium, sodium, potassium, and other undesirable metals that can otherwise interfere with critical aspects of the refining process or contaminate the renewable fuel products. To address this critical need, we describe the application of poly(ethylenimine)-modified cellulose nanocrystals as a low-cost material for the removal of unwanted metal/inorganic cations from rendered fat. A total of 28 real samples including poultry, white pork grease, and beef tallow were analyzed. Test results showed that the approach can effectively decrease the concentration of the target elements by 95 ± 2%, suggesting that this treatment protocol could dramatically improve the application of rendered fat products for renewable fuel refining.
Collapse
Affiliation(s)
- Ezequiel Vidal
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech San Miguel de Urcuquí Ecuador
| | - José M Camiña
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa La Pampa Argentina
| | - Carlos D Garcia
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| |
Collapse
|
5
|
Biswal AK, Panda L, Chakraborty S, Pradhan SK, Dash MR, Misra PK. Production of a nascent cellulosic material from vegetable waste: Synthesis, characterization, functional properties, and its potency for a cationic dye removal. Int J Biol Macromol 2023:124959. [PMID: 37247704 DOI: 10.1016/j.ijbiomac.2023.124959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
The present work reports the production of cellulose nanocrystals, CNC30 and CNC60, developed using vegetable waste, i.e., bottle gourd peel through sulfuric acid hydrolysis with a 30 and 60 min hydrolysis process coupled with ultrasonication. The FTIR confirmed the absence of hemicellulose and lignin, and XRD confirmed the crystallinity of the cellulose nanocrystals. DLS studies indicated the hydrodynamic diameter of CNC30 and CNC60 to be 195.5 nm and 192.2 nm, respectively. The TEM image and SAED pattern established the shape of CNC60 to be spherical, with an average particle size of 38.32 nm. CNC60 possessed lesser negative potential and higher thermal stability than CNC30, possibly due to the demolition of the crystalline regions containing sulfate groups. The functional properties, such as swelling power, water, and oil holding capacities of CNC60, were superior to that of CNC30. The adsorption batch parameters yielded 95.68 % methylene dye removal by CNC60 against the predicted value of 96.16 % by the RSM-PSO hybrid approach. The analyses of adsorption isotherms, kinetics, and thermodynamic parameters revealed the nature of the adsorbed layer and adsorption mechanism. Overall observations recommend that CNC60 could be a good and potent functional agent in paper technology, food technology, water treatment, and biomedical applications.
Collapse
Affiliation(s)
- Achyuta Kumar Biswal
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India
| | - Laxmipriya Panda
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India
| | - Sourav Chakraborty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda 732141, West Bengal, India
| | - Subrat Kumar Pradhan
- Organic Chemistry Laboratory, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India
| | - Manas Ranjan Dash
- Department of Chemistry, DIT University, Dehradun 248009, Uttarakhand, India
| | - Pramila Kumari Misra
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India.
| |
Collapse
|
6
|
Mouloua D, Lejeune M, Rajput NS, Kaja K, El Marssi M, El Khakani MA, Jouiad M. One-step chemically vapor deposited hybrid 1T-MoS 2/2H-MoS 2 heterostructures towards methylene blue photodegradation. ULTRASONICS SONOCHEMISTRY 2023; 95:106381. [PMID: 37004414 PMCID: PMC10457596 DOI: 10.1016/j.ultsonch.2023.106381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The photocatalytic degradation of methylene blue is a straightforward and cost-effective solution for water decontamination. Although many materials have been reported so far for this purpose, the proposed solutions inflicted high fabrication costs and low efficiencies. Here, we report on the synthesis of tetragonal (1T) and hexagonal (2H) mixed molybdenum disulfide (MoS2) heterostructures for an improved photocatalytic degradation efficiency by means of a single-step chemical vapor deposition (CVD) technique. We demonstrate that the 1T-MoS2/2H-MoS2 heterostructures exhibited a narrow bandgap ∼ 1.7 eV, and a very low reflectance (<5%) under visible-light, owing to their particular vertical micro-flower-like structure. We exfoliated the CVD-synthesised 1T-MoS2/2H-MoS2 films to assess their photodegradation properties towards the standard methylene blue dye. Our results showed that the photo-degradation rate-constant of the 1T-MoS2/2H-MoS2 heterostructures is much greater under UV excitation (i.e., 12.5 × 10-3 min-1) than under visible light illumination (i.e., 9.2 × 10-3 min-1). Our findings suggested that the intermixing of the conductive 1T-MoS2 with the semi-conducting 2H-MoS2 phases favors the photogeneration of electron-hole pairs. More importantly, it promotes a higher efficient charge transfer, which accelerates the methylene blue photodegradation process.
Collapse
Affiliation(s)
- D Mouloua
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France; Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC J3X-1P7, Canada
| | - M Lejeune
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - N S Rajput
- Advanced Materials Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - K Kaja
- Laboratoire National de métrologie et d'essais (LNE), 29 av. Roger Hennequin, 78197 Trappes, France
| | - M El Marssi
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - M A El Khakani
- Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC J3X-1P7, Canada.
| | - M Jouiad
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France.
| |
Collapse
|
7
|
Nan Y, Gomez-Maldonado D, Whitehead DC, Yang M, Peresin MS. Comparison between nanocellulose-polyethylenimine composites synthesis methods towards multiple water pollutants removal: A review. Int J Biol Macromol 2023; 232:123342. [PMID: 36716836 DOI: 10.1016/j.ijbiomac.2023.123342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Nanocellulose/polyethylenimine composites have attracted growing attention due to their versatility as new materials for application in different fields. Water remediation is one of the traditional applications of these composites and their investigation as adsorbents for single water pollutants is well established. However, most water resources such as rivers, lakes, and even oceans contain complex mixtures of pollutants. Despite several recently published reviews on water purification technology, they only focused on these material as single pollutant removers and hardly mentioned their capacity to simultaneously recover multiple pollutants. Therefore, there is still a gap in the archived literature considering nanocellulose/polyethylenimine composites targeting water remediation with multiple water pollutants. In this review, methods for synthesizing such composites are classified and compared according to the mechanism of reactions, such as chemical crosslinking and physical adsorption, while outlining advantages and limitations. Then, the water pollutants mainly targeted by those composites are discussed in detail to expound the relationship between the synthesis method and the type and adsorption capacity. Finally, the last section presents challenges and opportunities of these nanocellulose/polyethylenimine composites as emerging sorbents for sustainable multiple water pollutants purification technologies. This review aims to lay out the basis for future developments of these composites for multiple water pollutants.
Collapse
Affiliation(s)
- Yufei Nan
- Sustainable Bio-Based Materials Laboratory, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - Diego Gomez-Maldonado
- Sustainable Bio-Based Materials Laboratory, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | | | - Ming Yang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Maria S Peresin
- Sustainable Bio-Based Materials Laboratory, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA.
| |
Collapse
|