1
|
Newmeyer MN, Lupolt SN, Lyu Q, Nachman KE, Prasse C. Applying Nontargeted Analysis to Explore the Chemical Composition of Dust Collected in Infants' Homes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40390687 DOI: 10.1021/acs.est.5c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Dust ingestion is an important pathway for exposure to environmental chemicals, especially for children. However, estimating infant-specific dust ingestion rates remains challenging. One proposed approach to improve estimates is the identification of novel organic tracers. To help address this challenge, we conducted a nontargeted analysis on dust samples collected from waking and sleeping rooms in infants' homes (n = 30) in the greater Baltimore, MD region, as part of the INnovations to Generate Estimates of children's Soil/dust inTake (INGEST) Study. By leveraging publicly available data from the U.S. Environmental Protection Agency (EPA), including commercial product compositions and chemical functional uses, we showed that many compounds in dust were associated with personal care, cleaning, and consumer products. Most features were detected in both collection rooms in at least one home, but only 16.3% of features were detected in both rooms in all of the homes. Additionally, the relative abundance of features across rooms (i.e., room ratios) within and between homes varied substantially. The high intra- and interhome variability, possibly due to differences in consumer practices among inhabitants, may pose challenges with identifying and implementing an organic tracer for estimating children's dust ingestion rates and need to be rigorously characterized for any candidate.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Sara N Lupolt
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Qinfan Lyu
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Keeve E Nachman
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Carsten Prasse
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Simpson A, Fisher M, Harrison S, Morisset AS, Borghese MM, Braun JM, Bouchard MF, Saha T, Panagiotopoulos C, Booij L, Morrison K, Ashley-Martin J. Diet quality in relation to serum perfluoroalkyl substance concentrations in Canadian preadolescents. ENVIRONMENTAL RESEARCH 2025; 279:121790. [PMID: 40340011 DOI: 10.1016/j.envres.2025.121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) is concerning because some of these chemicals are associated with health effects. Preadolescents eat more food per body weight and may be more affected by substances in food compared to adults. OBJECTIVE Estimate how diet quality and nutrients are associated with concurrently measured PFAS concentrations in Canadian preadolescents. METHODS Using data from 157 participants (7-11 years) in a Maternal-Infant Research on Environmental Chemicals follow-up study (2018-2021), we analyzed serum concentrations of 9 PFAS, and derived 2019-Healthy Eating Food Index (HEFI-2019) scores and nutrient intakes from 24-h diet recalls. We used multivariable linear regression to estimate cross-sectional associations between diet and serum PFAS concentrations. RESULTS Saturated fat consumption was associated with higher serum perfluorooctanesulfonic acid (PFOS) concentrations. The fruits and vegetables score was associated with higher perfluorodecanoic acid (PFDA), and perfluorononanoic acid (PFNA); similar associations appeared with the HEFI-2019 total score. Percentage of energy intake (%E) from protein was associated with lower perfluorooctanoic acid (PFOA), PFOS, and perfluorohexanesulphonic acid (PFHxS) while %E from fat was associated with higher PFDA and PFOS. Fiber and iron intakes were associated with higher PFHxS. Vitamin D intake was associated with lower PFNA. CONCLUSIONS We observed some associations between diet and PFAS. Our findings may be partially explained by toxicokinetics and PFAS presence in Canadian food systems. However, our interpretation is hindered by lack of temporality and potential confounding. Additional investigations which integrate food systems information paired with PFAS concentrations from food and biomonitoring are required.
Collapse
Affiliation(s)
- Ashlyn Simpson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Stéphanie Harrison
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada
| | - Anne-Sophie Morisset
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada; École de Nutrition, Université Laval, Québec, Canada
| | - Michael M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
| | - Maryse F Bouchard
- Department of Epidemiology and Biostatistics, Institut national de la recherche Scientifique (INRS), Québec, Canada
| | - Trisha Saha
- Department of Epidemiology and Biostatistics, Institut national de la recherche Scientifique (INRS), Québec, Canada
| | | | - Linda Booij
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, CHU Sainte-Justine Research Centre, Montreal, Québec, Canada
| | - Katherine Morrison
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
De Battistis F, Djordjevic AB, Saso L, Mantovani A. Constitutive androstane receptor, liver pathophysiology and chemical contaminants: current evidence and perspectives. Front Endocrinol (Lausanne) 2025; 16:1472563. [PMID: 40255499 PMCID: PMC12005993 DOI: 10.3389/fendo.2025.1472563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction The Constitutive Androstane Receptor (CAR) (NR1I3), a pivotal member of the xenosensor family, plays a key role in the hepatic detoxification of xenobiotic and endobiotic chemicals through the induction of the expression of drug-metabolizing enzymes and transporters. CAR's involvement extends beyond detoxification, influencing gluconeogenesis, lipogenesis, bile acid regulation, and cellular processes such as proliferation, tissue regeneration, and carcinogenesis. This review explores CAR regulation by various factors, highlighting its role in mediating metabolic changes induced by environmental contaminants. Methods A literature search was conducted to identify all articles on the PubMed website in which the CAR-contaminant and CAR-hepatic steatosis relationship is analyzed in both in vitro and in vivo models. Results Numerous contaminants, such as perfluorooctanoic acid (PFOA), Zearalenone mycotoxin, PCB, triazole fungicide propiconazole can activate hepatic nuclear receptors contributing to the development of steatosis through increased de novo lipogenesis, decreased fatty acid oxidation, increased hepatic lipid uptake, and decreased gluconeogenesis. Indirect CAR activation pathways, particularly involving PFOA, are discussed in the context of PPARα-independent mechanisms leading to hepatotoxicity, including hepatocellular hypertrophy and necrosis, and their implications in nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease (NAFLD). The prevalence of NAFLD, a significant component of metabolic syndrome, underscores the importance of understanding CAR's role in its pathogenesis. Conclusions Experimental and epidemiological data suggest that endocrine disruptors, especially pesticides, play a significant role in NAFLD's development and progression via CAR-regulated pathways. This review advocates for the inclusion of modern toxicological risk assessment tools, such as New Approach Methodologies (NAMs), Adverse Outcome Pathways (AOPs), and Integrated Approaches to Testing and Assessment (IATA), to elucidate CAR-mediated effects and enhance regulatory frameworks.
Collapse
Affiliation(s)
- Francesca De Battistis
- Department of Food Safety, Nutrition, and Veterinary Public Health, Italian National Institute of Health, Rome, Italy
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Alberto Mantovani
- Italian National Food Safety Committee, Rome, Italy
- Study Centre KOS - Science, Art, Society, Rome, Italy
| |
Collapse
|
4
|
Wu Y, Du E, Wang X, Ma R, Cai X, Cai R, Zheng L, Peng M. Investigating the molecular interactions of two long-chain PFASs with human serum albumin: Insights from multispectral analysis and computational methods. Biochem Biophys Res Commun 2025; 751:151356. [PMID: 39923463 DOI: 10.1016/j.bbrc.2025.151356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Long-chain perfluoroalkyl substances (FPAS) are commonly detected in environmental and biological contexts. This study investigated the interactions of perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA) with human serum albumin (HSA). Fluorescence quenching experiments demonstrated static quenching of HSA's intrinsic fluorescence by both PFUnDA and PFTrDA, resulting in the formation of stable HSA-PFAS complexes. At 298 K, PFUnDA exhibited a higher binding constant (5.50 × 107 L/mol) than PFTrDA (1.01 × 105 L/mol), indicating stronger binding affinity. Thermodynamic analysis indicated that hydrogen bonds and van der Waals forces were the predominant interactions in the binding processes. Molecular docking confirmed that both PFASs bind to the IIA subdomain of HSA, with PFUnDA exhibiting lower binding energy (-8.690 kcal/mol) than PFTrDA. Molecular dynamics simulations further supported these findings, with PFUnDA showing stronger binding energy (-13.894 kcal/mol) driven primarily by van der Waals forces and electrostatic interactions. Quantum chemical analysis reveals that the carbonyl groups in PFUnDA and PFTrDA exhibit significant molecular reactivity, indicating a propensity for more vigorous chemical interactions. This study not only reveals the potential biological activity of PFUnDA and PFTrDA, but also provides scientific basis for evaluating their biosafety and risks.
Collapse
Affiliation(s)
- Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Erdeng Du
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; College of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Xichen Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Rui Ma
- College of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Rutao Cai
- College of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Lu Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; College of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Mingguo Peng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Basij M, Tezerji NS, Shirani M, Mahdavi V. Simultaneous screening of 211 pesticide residues in date fruits in Iran and health risk assessments based on Mont Carlo simulation. Sci Rep 2025; 15:6545. [PMID: 39994255 PMCID: PMC11850600 DOI: 10.1038/s41598-025-87638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, 211 pesticides were analyzed simultaneously using a QuEChERS method coupled with GC-MS-MS and LC-MS-MS in 90 fresh date fruit samples produced in Kerman Province. Probabilistic estimates of non-carcinogenic and carcinogenic health risks were evaluated using Monte Carlo simulation-based hazard Quotient (HQ), hazard index (HI) and carcinogenic risk (CR). The linearity of 0.015-0.30 mg kg-1 with the coefficient of determination (R2) values exceeding 0.9989 were achieved. The percentage of recoveries, limits of detection (LODs), limits of quantification (LOQs), Relative standard deviation (RSD %) and matrix effect (ME) were determined in the range of 77-119%, 0.001-0.003 mg kg-1 and 0.005-0.01 mg kg-1, ≤ 15% and - 7.5 to 14.2%, respectively. Among 90 analyzed date fruits, 9 samples (10%) contained at least one pesticide residue, whereas 5 samples (5.5%) showed pesticide residues exceeding maximum residual limit (MRL) according to the national and European Commission. The obtained HQ values for the target pesticides were as cypermethrin > imazalil > permethrind > endosulfan > Fenpropathrin. The HI values for adult and child consumers with all pesticide residues were lower than 1. The CR was less than 1.0E-6 value. Thus, there was no carcinogenic risk to the consumers of date fruits.
Collapse
Affiliation(s)
- Moslem Basij
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | | | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 7867161167, Jiroft, Iran.
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
6
|
Fayad-Martinez C, Gidley M, Roca MA, Nitta R, Pourmand A, Sharifi A, Adelabu F, Honan JK, Ogunseye OO, Beamer PI, Solo-Gabriele H, Ferguson A. Mass and particle size distribution of household dust on children's hands. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00749-3. [PMID: 39930017 DOI: 10.1038/s41370-025-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Children are vulnerable to household dust exposure; however, to date, a handful of studies simultaneously report both the mass and particle size of household dust found on children's hands after natural indoor play activities. OBJECTIVE Evaluate a new approach to measure dust loading and characterize particle size on a child's hands using a Coulter Counter. METHODS The volume of particles rinsed off children's hands was measured through counting and sizing particles (using a Coulter Counter), followed by multiplying the particle volume by the density of dust collected from the home. This mass was then normalized per total hand surface area to obtain dust loading on children's hands. Results were compared by region (North Carolina, Florida, Arizona), age groups (6 months to 6 years), and social demographics (gender, race, ethnicity) for 101 children. RESULTS The estimated median density for household dust was 1.54 g/cm3, with an average of 1.58 g/cm3 (SD = 0.43). The overall median dust loading on children's hands was 11.13 μg/cm2 (per total hand surface area), with a range of 0.004-167.6 μg/cm2. No statistical difference was observed by region, age, nor social demographics (p > 0.05). The majority of particles (90%) from children's hand rinses had a diameter (D90,v) <35 μm; however, these small particles represent a fraction of the total mass. This new approach succeeded at obtaining dust loadings and particle size simultaneously from the same sample, in contrast to current methods that would have required multiple methods and sample types. IMPACT STATEMENT Children are vulnerable to household dust due to their play behavior; however, to date, limited measurements are available for the mass and particle size of dust on children's hands after natural indoor play activities. We propose a new approach to facilitate dust loading measurements, while also obtaining the particle size of dust, through the usage of a Coulter Counter. Results showed that 90% of particles were <35 μm, which is four times smaller than the current guidelines threshold (150 μm) for risk assessments that utilize estimates for particles found on hands.
Collapse
Affiliation(s)
- Cristina Fayad-Martinez
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA.
| | - Maribeth Gidley
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
- The Cooperative Institute For Marine and Atmospheric Studies, University of Miami, Miami, FL, USA
| | - Matthew A Roca
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Ryuichi Nitta
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Ali Pourmand
- Neptune Isotone Laboratory, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Arash Sharifi
- Neptune Isotone Laboratory, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Research and Development Department, Isobar Science, Miami, FL, USA
| | - Foluke Adelabu
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Jenna K Honan
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Olusola Olabisi Ogunseye
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Paloma I Beamer
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Helena Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Alesia Ferguson
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| |
Collapse
|
7
|
Eichler CMA, Chang NY, Amparo DE, Hubal EAC, Surratt JD, Morrison GC, Turpin BJ. Partitioning of Neutral PFAS in Homes and Release to the Outdoor Environment: Results from the IPA Campaign. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18870-18880. [PMID: 39387867 PMCID: PMC11996290 DOI: 10.1021/acs.est.4c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The distribution and fate of per- and polyfluoroalkyl substances (PFAS) in homes are not well understood. To address this, we measured nine neutral PFAS in dust, airborne particles, dryer lint, and on heating and air conditioning (HAC) filters in 11 homes in North Carolina as part of the Indoor PFAS Assessment (IPA) Campaign and compared them with concurrently collected gas and cloth measurements. Fluorotelomer alcohols (FTOHs) contributed most (≥75%) to total (∑) measured neutral PFAS concentrations in dust, HAC filter, and dryer lint samples, with mean ∑(FTOH) concentrations of 207 ng/g, 549 ng/g, and 84 ng/g, respectively. In particles, perfluorooctane sulfonamidoethanols (FOSEs) dominated, with a mean ∑(FOSE) concentration of 0.28 ng/m3 or 75,467 ng/g. For FTOHs and FOSEs, resulting mean dust-air, HAC filter-air, dryer lint-air and particle-air partition coefficients in units of log(m3/μg) ranged (across species) from -5.1 to -3.6, -4.9 to -3.5, -5.4 to -4.1, and -3.2 to -0.78, respectively. We estimate that cloth, gas phase, and HAC filters are the largest reservoirs for FTOHs, while cloth, HAC filters, and dust are the largest reservoirs for FOSEs. Release rates of neutral PFAS from homes to the outdoor environment are reported.
Collapse
Affiliation(s)
- Clara M. A. Eichler
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Naomi Y. Chang
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Daniel E. Amparo
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Elaine A. Cohen Hubal
- U.S. EPA, Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27709, USA
| | - Jason D. Surratt
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
- University of North Carolina at Chapel Hill, College of Arts and Sciences, Department of Chemistry, Chapel Hill, NC 27599, USA
| | - Glenn C. Morrison
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
9
|
Park EJ, Li K, Kang MS, Choi JW, Baek B, Yang YK, Cho AE, Lee BS. Perfluorooctanoic acid inhibits cell proliferation through mitochondrial damage. Toxicol In Vitro 2024; 97:105810. [PMID: 38513818 DOI: 10.1016/j.tiv.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Grown evidence has shown that the liver and reproductive organs were the main target organs of perfluorooctanoic acid (PFOA). Herein, we studied a toxic mechanism of PFOA using HeLa Chang liver epithelial cells. When incubated with PFOA for 24 h or 48 h, cell proliferation was inhibited in a concentration- and time-dependent fashion, but interestingly, the feature of dead cells was not notable. Mitochondrial volume was increased with concentration and time, whereas the mitochondrial membrane potential and produced ATP amounts were significantly reduced. Autophagosome-like vacuoles and contraction of the mitochondrial inner membrane were observed in PFOA-treated cells. The expression of acetyl CoA carboxylase (ACC) and p-ACC proteins rapidly decreased, and that of mitochondrial dynamics-related proteins increased. The expression of solute carrier family 7 genes, ChaC glutathione-specific gamma-glutamylcyclotransferase 1, and 5S ribosomal RNA gene was up-regulated the most in cells exposed to PFOA for 24 h, and the KEGG pathway analysis revealed that PFOA the most affected metabolic pathways and olfactory transduction. More importantly, PPAR alpha, fatty acid binding protein 1, and CYP450 family 1 subfamily A member 1 were identified as the target proteins for binding between PFOA and cells. Taken together, we suggest that disruption of mitochondrial integrity and function may contribute closely to PFOA-induced cell proliferation inhibition.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| | - Kexin Li
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Jae-Won Choi
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - BoSung Baek
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Yu-Kyeong Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Byoung-Seok Lee
- Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
10
|
Lasters R, Van Sundert K, Groffen T, Buytaert J, Eens M, Bervoets L. Prediction of perfluoroalkyl acids (PFAAs) in homegrown eggs: Insights into abiotic and biotic factors affecting bioavailability and derivation of potential remediation measures. ENVIRONMENT INTERNATIONAL 2023; 181:108300. [PMID: 37926061 DOI: 10.1016/j.envint.2023.108300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Homegrown eggs from free-ranging laying hens often contain elevated concentrations of perfluoroalkyl acids (PFAAs). However, it is unclear which factors contribute to these relatively large exposure risk scenarios. Moreover, existing bioavailability and modeling concepts of conventional organic pollutants cannot be generalized to PFAAs due to their different physicochemical soil interactions. Therefore, there is an urgent need for empirical models, based on real-world data, to provide insights into how (a)biotic factors affect the bioavailability to eggs. To this end, 17 targeted analytes were analyzed in abiotic (i.e. rainwater, soil; both N = 101) matrices and homegrown eggs (N = 101), which were sampled in 101 private gardens across Flanders (Belgium) in 2019, 2021 and 2022. Various soil characteristics were measured to evaluate their role in affecting PFAA bioavailability to the eggs. Finally, PFAAs were measured in potential feed sources (i.e. homegrown vegetable and earthworm pools; respectively N = 49 and N = 34) of the laying hens to evaluate their contribution to the egg burden. Modeling suggested that soil was a major exposure source to laying hens, accounting for 16-55% of the total variation in egg concentrations for dominant PFAAs. Moreover, concentrations in vegetables and earthworms for PFBA and PFOS, respectively, were significantly positively related with corresponding egg concentrations. Predictive models based on soil concentrations, total organic carbon (TOC), pH, clay content and exchangeable cations were successfully developed for major PFAAs, providing possibilities for time- and cost-effective risk assessment of PFAAs in homegrown eggs. Among other soil characteristics, TOC and clay content were related with lower and higher egg concentrations for most PFAAs, respectively. This suggests that bioavailability of PFAAs to the eggs is driven by complex physicochemical interactions of PFAAs with TOC and clay. Finally, remediation measures were formulated that are readily applicable to lower PFAA exposure via homegrown eggs.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Kevin Van Sundert
- Research group of Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Climate and Ecology Lab, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02142, USA; Biobased Sustainability Solutions research group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Jodie Buytaert
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
11
|
Sapozhnikova Y, Taylor RB, Bedi M, Ng C. Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. CHEMOSPHERE 2023:139381. [PMID: 37392795 DOI: 10.1016/j.chemosphere.2023.139381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
The purpose of this study was to investigate the presence and levels of per- and polyfluoroalkyl substances (PFAS) in food packaging originating from different geographic locations. Food packaging samples were extracted and analyzed by targeted analysis with liquid chromatography-mass spectrometry (LC-MS/MS) before and after a total oxidizable precursor (TOP) assay. Additionally, full-scan high resolution MS (HRMS) was used to screen for PFAS not included in the targeted list. Of the 88 food packaging samples, 84% had detectable levels of at least one PFAS prior to oxidation with a TOP assay, with 6:2 fluorotelomer phosphate diester (6:2 diPAP) found most frequently and at the highest levels (224 ng/g). Other frequently detected substances (in 15-17% of samples) were PFHxS, PFHpA and PFDA. Shorter chain perfluorinated carboxylic acids PFHpA (C7), PFPeA (C5) and PFHxS (C6) were present at levels up to 51.3, 24.1 and 18.2 ng/g, respectively. Average ∑PFAS levels were 28.3 ng/g and 381.9 ng/g before and after oxidation with the TOP assay. The 25 samples with highest frequency of detection and amounts of measured PFAS were selected for migration experiments with food simulants to better understand potential dietary exposure. PFHxS, PFHpA, PFHxA and 6:2 diPAP were measured in the food simulants of five samples at concentrations ranging from 0.04 to 12.2 ng/g and at increasing concentrations over the 10-day migration period. To estimate potential exposure to PFAS that had migrated from food packaging samples, weekly intake was calculated and ranged from 0.0006 ng/kg body weight/week for PFHxA exposure in tomato packaging to 1.1200 ng/kg body weight/week for PFHxS exposure in cake paper. These values were below the established EFSA maximum tolerable weekly intake (TWI) of 4.4 ng/kg body weight/week for the sum of PFOA, PFNA, PFHxS and PFOS.
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Raegyn B Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Megha Bedi
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
12
|
Delatour T, Theurillat X, Eriksen B, Mujahid C, Mottier P. Inadequate definition of the limit of quantification used for the analysis of perfluoroalkyl substances in food by liquid chromatography-tandem mass spectrometry may compromise the reliability of the data requested by the European regulation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9507. [PMID: 36951453 DOI: 10.1002/rcm.9507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widespread technology used for the quantitative determination of per- and polyfluoroalkyl substances (PFAS) in foodstuff. Specifically, LC-MS/MS offers an attractive performance by combining the sensitivity and selectivity required by the European Union for testing perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorononanoic acid, and perfluorohexane sulfonic acid with maximum limits of quantification (LOQ) in the sub-parts-per-billion (μg/kg) or the parts-per-trillion (ng/kg) domains. In this article, we highlight the important diversity in LOQ definitions applied in LC-MS/MS methods described in the literature that raise concerns about the capability of some of those to generate reliable data requested by the European regulation. Here, we point out the risk of false response or misquantification if the criteria for assessing LOQ suffer from a lack of rigor. We emphasize the need to use PFAS-free samples spiked with the analyte(s) of interest and the application of identification criteria according to official documents for a sound measurement of the LOQ.
Collapse
Affiliation(s)
- Thierry Delatour
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | | | - Bjørn Eriksen
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Claudia Mujahid
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Pascal Mottier
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
13
|
Murase W, Kubota A, Ikeda-Araki A, Terasaki M, Nakagawa K, Shizu R, Yoshinari K, Kojima H. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays. Toxicology 2023:153577. [PMID: 37302725 DOI: 10.1016/j.tox.2023.153577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic perfluorinated eight-carbon organic chemical, has been reported to induce hepatotoxicity, including increased liver weight, hepatocellular hypertrophy, necrosis, and increased peroxisome proliferation in rodents. Epidemiological studies have demonstrated associations between serum PFOA levels and various adverse effects. In this study, we investigated the gene expression profiles of human HepaRG cells exposed to 10 and 100 μM PFOA for 24h. Treatment with 10 and 100 μM PFOA significantly modulated the expression of 190 genes and 996 genes, respectively. In particular, genes upregulated or downregulated by 100µM PFOA included peroxisome proliferator-activated receptor (PPAR) signaling genes related to lipid metabolism, adipocyte differentiation, and gluconeogenesis. In addition, we identified the "Nuclear receptors-meta pathways" following the activation of other nuclear receptors: constitutive androstane receptor (CAR), pregnane X receptor (PXR) and farnesoid X receptor (FXR), and the transcription factor, nuclear factor E2-related factor 2 (Nrf2). The expression levels of some target genes (CYP4A11, CYP2B6, CYP3A4, CYP7A1, and GPX2) of these nuclear receptors and Nrf2 were confirmed using quantitative reverse transcription polymerase chain reaction. Next, we performed transactivation assays using COS-7 or HEK293 cells to investigate whether these signaling-pathways were activated by the direct effects of PFOA on human PPARα, CAR, PXR, FXR and Nrf2. PFOA activated PPARα in a concentration-dependent manner, but did not activate CAR, PXR, FXR, or Nrf2. Taken together, these results suggest that PFOA affects the hepatic transcriptomic responses of HepaRG cells through direct activation of PPARα and indirect activation of CAR, PXR FXR and Nrf2. Our finding indicates that PPARα activation found in the "Nuclear receptors-meta pathways" functions as a molecular initiating event for PFOA, and indirect activation of alternative nuclear receptors and Nrf2 also provide important molecular mechanisms in PFOA-induced human hepatotoxicity.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koji Nakagawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
14
|
Timshina AS, Sobczak WJ, Griffin EK, Lin AM, Townsend TG, Bowden JA. Up in the air: Polyfluoroalkyl phosphate esters (PAPs) in airborne dust captured by air conditioning (AC) filters. CHEMOSPHERE 2023; 325:138307. [PMID: 36878365 DOI: 10.1016/j.chemosphere.2023.138307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously present in our indoor living environments. Dust is thought to accumulate PFAS released indoors and serve as an exposure pathway for humans. Here, we investigated whether spent air conditioning (AC) filters can be exploited as opportunistic samplers of airborne dust for assessing PFAS burden in indoor environments. Used AC filters from campus facilities (n = 19) and homes (n = 11) were analyzed for 92 PFAS via targeted ultra-high pressure liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). While 27 PFAS were measured (in at least one filter), the predominant species were polyfluorinated dialkylated phosphate esters (diPAPs), with the sum of 6:2-, 8:2-, and 6:2/8:2diPAPs accounting for approximately 95 and 98 percent of ∑27PFAS in campus and household filters, respectively. Exploratory screening of a subset of the filters revealed the presence of additional species of mono-, di-, and tri-PAPs. Considering the constant human exposure to dust indoors and the potential of PAPs to degrade into terminal species with well-established toxicological risks, assessing dust for these precursor PFAS warrants further investigation with respect to both human health and PFAS loading to landfills from this under studied waste stream.
Collapse
Affiliation(s)
- Alina S Timshina
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA
| | - William J Sobczak
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA
| | - Emily K Griffin
- University of Florida, Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL, 32611, USA
| | - Ashley M Lin
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA
| | - Timothy G Townsend
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA
| | - John A Bowden
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA; University of Florida, Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Xing Y, Li Q, Chen X, Huang B, Ji L, Zhang Q, Fu X, Li T, Wang J. PFASs in Soil: How They Threaten Human Health through Multiple Pathways and Whether They Are Receiving Adequate Concern. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1259-1275. [PMID: 36622935 DOI: 10.1021/acs.jafc.2c06283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been mass-produced and widely applied in consumer and industrial products, resulting in their widespread presence in the environment. Features such as environmental persistence, bioaccumulation, and high toxicity even at low doses have made PFASs an increasing concern. This brief review focuses on soil PFASs, especially the effect of soil PFASs on other environmental media and their potential threats to human health through daily diet. Specifically, soil PFASs contamination caused by different pathways was first investigated. Soil pollution from application of aqueous film-forming foams (AFFFs) is generally more severe than that from fluorochemical manufacturing plants, followed by biosolid land use, landfill, and irrigation. Factors, such as carbon chain length of PFASs, wastewater treatment technology, geographical conditions, and regional development level, are related to soil PFASs' pollution. Then, the migration, bioaccumulation, and toxicity characteristics of soil PFASs were analyzed. Short-chain PFASs have higher solubility, mobility, and bioavailability, while long-chain PFASs have higher bioaccumulation potential and are more toxic to organisms. Factors such as soil texture, solution chemistry conditions, enzymes, and fertilization conditions also influence the environmental behavior of PFASs. The risk of human exposure to PFASs through agricultural and animal products is difficult to control and varies depending on living region, age, eating habits, lifestyle, ethnicity, etc. Soil PFASs threaten drinking water safety, affect soil function, and enter food webs, threatening human health. Knowledge gaps and perspectives in these research fields are also included in current work to assist future research to effectively investigate and understand the environmental risks of soil PFASs, thereby reducing human exposure.
Collapse
Affiliation(s)
- Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
16
|
Li Y, Zhang T, Cheng Z, Zhang Q, Yang M, Zhao L, Zhang S, Lu Y, Sun H, Wang L. Direct evidence on occurrence of emerging liquid crystal monomers in human serum from E-waste dismantling workers: Implication for intake assessment. ENVIRONMENT INTERNATIONAL 2022; 169:107535. [PMID: 36152360 DOI: 10.1016/j.envint.2022.107535] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Liquid crystal monomers (LCMs) are widely used chemicals and ubiquitous emerging organic pollutants in the environment, some of which have persistent, bio-accumulative, and toxic potentials. Elevated levels of LCMs have been found in the e-waste dismantling associated areas. However, information on their internal exposure bio-monitoring is scarce. For the first time, occurrences of LCMs were observed in the serum samples of occupational workers (n = 85) from an e-waste dismantling area in South China. Twenty-nine LCMs were detected in serum samples of the workers, with a median value of 35.2 ng/mL (range: 7.78-276 ng/mL). Eight noticed LCMs were found to have relatively high detection frequencies ranging from 52.9% to 96.5%. The correlation analysis of individual LCMs indicated potential common applications and similar sources to the LCMs in occupational workers. Fluorinated LCMs were identified as the predominant monomers in the workers. Additionally, the estimated daily intake of the LCMs in the occupational workers was significantly higher than those in residents from the reference areas (p < 0.05, Mann-Whitney U Test, median values: 1.46 ng/kg bw/day versus 0.40 ng/kg bw/day), indicating a substantially higher exposure level to e-waste dismantling workers.
Collapse
Affiliation(s)
- Yuhe Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qianru Zhang
- Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|