1
|
Shi J, Qian W, Zhou Z, Jin Z. Response of bacterial communities in desert grassland soil profiles to acid mine drainage pollution. CHEMOSPHERE 2024; 369:143831. [PMID: 39608651 DOI: 10.1016/j.chemosphere.2024.143831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Acid mine drainage (AMD) causes serious environmental pollution, which imposes stresses on soil ecosystems. Therefore, it is critical to study the responses of soil bacterial communities to AMD pollution in ecologically fragile desert grasslands. Here, the bacterial community composition, structure, and assembly processes in vertical soil profiles of an AMD contaminated desert grassland were explored using 16S rRNA high-throughput sequencing. The results showed that the surface layers of the profiles exhibited lower pH and higher heavy metals (HMs) content due to AMD influence. The AMD contamination led to reduced bacterial diversity in the surface soil layer of the profiles and significantly changed the bacterial community composition and structure. Gradients in pH, TK, TN, and HMs were the main factors driving bacterial community variability. In contrast to the uncontaminated profile, deterministic processes were important in shaping soil bacterial community in the AMD contaminated profiles. These findings will enhance understanding about the responses of soil bacteria in desert grassland soil to the environmental changes caused by AMD contamination and will improve the remediation of AMD contaminated soil.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Public Technology Service Center, Urumqi, 830011, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China; Taklimakan Desert Ecosystem Field Observation and Research Station of Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
2
|
Li F, Li M, Liu Y, Li F, Tian J. Citric acid-induced photochemical behavior of Cr(III)-substituted ferrihydrite: Fe and Cr release, mineral transformation and reactive oxygen species generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171778. [PMID: 38513872 DOI: 10.1016/j.scitotenv.2024.171778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Cr(III)-substituted ferrihydrite (Fh-Cr(III)) is widespread in the surrounding environment of mining areas. Fh-Cr(III) is unstable and susceptible to the influence of environmental factors, such as dissolved organic matter (DOM) and light, so Cr species embedded in mineral crystal layers are likely to have more profound negative effects on the environment with the photochemical behaviors of minerals. However, the photochemical behaviors of Fh-Cr(III) in the presence of DOM remains poorly understood. For this reason, citric acid (CA) was chosen as the representative DOM to study its combined effects with visible light irradiation on Fh-Cr(III) dissolution and phase transition. The results showed that CA hindered the agglomeration of Fh-Cr(III) particles, thereby slowing the phase transition of Fh-Cr(III). However, CA exacerbated the release of Fe and Cr by maintaining Fh-Cr(III) under unstable crystal structure. Moreover, due to the occurrence of ligand-metal charge transfer (LMCT) in (CA)n-Fh-Cr(III) formed on the Fh-Cr(III) surface, the synergistic effect between CA and light irradiation greatly promoted the dissolution of Fh-Cr(III). In the mixed system of Fh-Cr(III) (3 g/L) and CA (5 mM) at initial pH 3.0, the maximum concentrations of TFe and TCr were 18.17 and 5.68 mg/L after 6 h of light reaction, which were 1.82 and 3.62 times of those in the corresponding system in the darkness. Meanwhile, the Fe(III)/Fe(II) cycling in solution and solid surfaces was affected by various reactive oxygen species (ROS) generated from the LMCT process, in which the photoproduced Fe(II) further accelerated Cr(III) dissolution under acidic solution. The fast release of Cr(III) may pose greater danger to the environment as the more toxic Cr(VI) can be easily formed through the oxidation of dissolved Cr(III). This work offers fresh insights into the migration and transformation of Cr elements in the natural environment.
Collapse
Affiliation(s)
- Fan Li
- Department of Environmental Science Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengke Li
- Department of Environmental Science Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- Department of Environmental Science Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Feng Li
- Department of Environmental Science Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- Department of Environmental Science Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
3
|
Li R, Yao J, Liu J, Sunahara G, Duran R, Xi B, El-Saadani Z. Bioindicator responses to extreme conditions: Insights into pH and bioavailable metals under acidic metal environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120550. [PMID: 38537469 DOI: 10.1016/j.jenvman.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Acid mine drainage (AMD) caused environmental risks from heavy metal pollution, requiring treatment methods such as chemical precipitation and biological treatment. Monitoring and adapting treatment processes was crucial for success, but cost-effective pollution monitoring methods were lacking. Using bioindicators measured through 16S rRNA was a promising method to assess environmental pollution. This study evaluated the effects of AMD on ecological health using the ecological risk index (RI) and the Risk Assessment Code (RAC) indices. Additionally, we also examined how acidic metal stress affected the diversity of bacteria and fungi, as well as their networks. Bioindicators were identified using linear discriminant analysis effect size (LEfSe), Partial least squares regression (PLS-R), and Spearman analyses. The study found that Cd, Cu, Pb, and As pose potential ecological risks in that order. Fungal diversity decreased by 44.88% in AMD-affected areas, more than the 33.61% decrease in bacterial diversity. Microbial diversity was positively correlated with pH (r = 0.88, p = 0.04) and negatively correlated with bioavailable metal concentrations (r = -0.59, p = 0.05). Similarly, microbial diversity was negatively correlated with bioavailable metal concentrations (bio_Cu, bio_Pb, bio_Cd) (r = 0.79, p = 0.03). Acidiferrobacter and Thermoplasmataceae were prevalent in acidic metal environments, while Puia and Chitinophagaceae were identified as biomarker species in the control area (LDA>4). Acidiferrobacter and Thermoplasmataceae were found to be pH-tolerant bioindicators with high reliability (r = 1, P < 0.05, BW > 0.1) through PLS-R and Spearman analysis. Conversely, Puia and Chitinophagaceae were pH-sensitive bioindicators, while Teratosphaeriaceae was a potential bioindicator for Cu-Zn-Cd metal pollution. This study identified bioindicator species for acid and metal pollution in AMD habitats. This study outlined the focus of biological monitoring in AMD acidic stress environments, including extreme pH, heavy metal pollutants, and indicator species. It also provided essential information for heavy metal bioremediation, such as the role of omics and the effects of organic matter on metal bioavailability.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254, Pau, France
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zozo El-Saadani
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Lin W, Peng L, Li H, Xiao T, Wang J, Wang N, Zhang X, Zhang H. Antimony(V) behavior during the Fe(II)-induced transformation of Sb(V)-bearing natural multicomponent secondary iron mineral under acidic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169592. [PMID: 38154637 DOI: 10.1016/j.scitotenv.2023.169592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Fe(II)-induced phase transformations of secondary iron minerals have attracted considerable attention due to their influence on antimony (Sb) mobility. However, Fe(II)-induced natural multicomponent secondary iron mineral (nmSIM) transformations and the corresponding repartitioning of Sb on nmSIM under acidic conditions upon Fe(II) exposure have not been systematically examined. Herein, we investigated the effect of Fe(II) on nmSIM mineralogy and Sb mobility in Sb(V)-bearing nmSIM at pH 3.8 and 5.6 at various Fe(II) concentrations over 15 d. The Sb(V)-bearing nmSIM phase transformation occurred under both strongly and weakly acidic conditions without Fe(II) exposure, while the presence of Fe(II) significantly intensified the transformation, and substantial amounts of intermediary minerals, including jarosite, ferrihydrite, lepidocrocite and fougerite, formed during the initial reaction stage, especially at pH 5.6. X-ray diffraction (XRD) analyses confirmed that goethite and hematite were the primary final-stage transformation products of Sb(V)-bearing nmSIM, regardless of Fe(II) exposure. Throughout the Sb(V)-bearing nmSIM transformation at pH 3.8, Sb release was inversely related to the Fe(II) concentration in the initial stage, and after maximum release was achieved, Sb was gradually repartitioned onto the nmSIM. No Sb repartitioning occurred in the absence of Fe(II) at pH 5.6, but the introduction of Fe(II) suppressed Sb release and improved Sb repartitioning on nmSIM. This transformation was conducive to Sb reimmobilization on Sb(V)-bearing nmSIM due to the structural incorporation of Sb into the highly crystalline goethite and hematite generated by the Sb(V)-bearing nmSIM transformation, and no reduction of Sb(V) occurred. These results imply that Fe(II) can trigger mineralogical changes in Sb(V)-bearing nmSIM and have important impacts on Sb partitioning under acidic conditions. These new insights are essential for assessing the mobility and availability of Sb in acid mine drainage areas.
Collapse
Affiliation(s)
- Wangjun Lin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hui Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hanmo Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Qin S, Li X, Huang J, Li W, Wu P, Li Q, Li L. Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123243. [PMID: 38154773 DOI: 10.1016/j.envpol.2023.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Heavy metal pollution caused by acid mine drainage (AMD) is a global environmental concern. The processes of migration and transformation of heavy metals carried by AMD are more complicated in karst areas where carbonate rocks are widely distributed. Water, suspended particulate matter (SPM), and sediments are the crucial media in which heavy metals migrate and it is important to elucidate the geochemical behavior of AMD heavy metals in these environments. This study tracked AMD heavy metals from release to migration and transformation in a natural river system in a karst mining area. AMD directly impacted the hydrochemical composition of the karst water environment, but the carbonate rock naturally neutralized the acidity of the AMD. AMD heavy metal concentrations decreased gradually after the tributaries from the mining area entered the main river, with the metals tending to accumulate in SPM and sediments. The forms in which heavy metals were present were influenced by pH and their relative concentrations. Raman spectroscopy and transmission electron microscopy of sediments from the mining area suggested that the presence of an iron phase plays an important role in the fate of AMD-derived heavy metals. It is, therefore, necessary to elucidate the mechanisms of iron phase precipitation from sediments in order to control AMD-derived heavy metals in karst mining areas. This study improves our understanding of the geochemical behavior of heavy metals in karst environments and provides direction for the prevention and control of AMD in affected areas.
Collapse
Affiliation(s)
- Shichan Qin
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xuexian Li
- Key Laboratory of Karst Georesources and Environment(Guizhou University),Ministry of Education, Guiyang, 550025, China; College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jiangxun Huang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment(Guizhou University),Ministry of Education, Guiyang, 550025, China
| | - Qingguang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment(Guizhou University),Ministry of Education, Guiyang, 550025, China
| | - Ling Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081, Guizhou, China.
| |
Collapse
|
6
|
Zhao R, Wu X, Zhu G, Zhang X, Liu F, Mu W. Revealing the release and migration mechanism of heavy metals in typical carbonate tailings, East China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132978. [PMID: 37984137 DOI: 10.1016/j.jhazmat.2023.132978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Refining the occurrence characteristics of tailings hazardous materials at source is of great importance for pollution management and ecological reclamation. However, the release and transport of heavy metals (HMs) from tailings under rainfall drenching in simulated real-world environments is less well portrayed, particularly highlighting the inherent neutralisation in tailings wastes under superimposed dynamic conditions. In this study, dynamic leaching columns simulating actual conditions were used to observe the release and transport of HMs from tailings under acid rainfall infiltration at spatial and temporal scales. The release rate of trace elements (e.g., As, Cr, Ni, Pb, Cd) is high. Neutralisation in the presence of carbonate rocks in the gangue reduces HMs release intensity from tailings with high heavy metal content, along with the precipitation of iron oxides and chromium-bearing minerals, etc. In addition, the vertical differentiation of HMs is more relevant to physical processes. In the absence of carbonate rocks in gangue, the lowest pH value is reached within 1.2 h after acid rain infiltrates the tailings. At the same time, Cu, Zn and Cd are released significantly from the minerals at the superficial level. The release of As(III) is mainly concentrated in the early and late stages of water-rock contact.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiong Wu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Ge Zhu
- Department of Hydrogeology and Environmental Geology, China Geological Survey, Beijing 100011, PR China
| | - Xiao Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wenping Mu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
7
|
Ren Y, Cao X, Wu P, Li L. Experimental insights into the formation of secondary minerals in acid mine drainage-polluted karst rivers and their effects on element migration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160076. [PMID: 36356774 DOI: 10.1016/j.scitotenv.2022.160076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) threatens the water quality and safety of karst river water (KRW), and the formation of secondary iron or aluminum-bearing minerals during the mixing of AMD with KRW plays a crucial role in the migration of elements. However, the variations in the mineralogical, morphological and elemental compositions of secondary minerals and their influences on the migration of elements during AMD-KRW mixing have not been systematically studied. In this study, we mixed different proportions of AMD and KRW in a laboratory experiment to simulate seasonal hydrological conditions in a river to understand the major and trace elemental distributions in the mixed water and in precipitates and we discuss the formation process for the secondary minerals. The results showed that AMD can lead to a decrease in pH and DO and an increase in heavy metals and rare earth elements (REEs) in KRW. With the biological or chemical oxidation of Fe2+, Fe3+ combines with SO42- to form schwertmannite or hydrolyzes to form Fe(OH)3(s) and FeOOH(s), accompanied by the formation of amorphous Al hydroxide, resulting in a decrease in pH and an increase in Eh. Schwertmannite had strong adsorption and coprecipitation effects on Mn, Cr, Cu and As, so the adsorption and coprecipitation effects of schwertmannite on REEs were inhibited, while the migration of REEs were mainly affected by Al hydroxides. Therefore, after the AMD mixes with KRW, it not only causes severe water and sediment pollution but also adsorbs and enriches high concentrations of heavy metals in the secondary minerals formed during the mixing process, creating a major ecological hazard that requires further attention.
Collapse
Affiliation(s)
- Yeye Ren
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| | - Xingxing Cao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| | - Linwei Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| |
Collapse
|
8
|
Zhang H, Liang P, Liu Y, Wang X, Bai Y, Xing Y, Wei C, Li Y, Liu Y, Hu Y. Spatial Distributions and Intrinsic Influence Analysis of Cr, Ni, Cu, Zn, As, Cd and Pb in Sediments from the Wuliangsuhai Wetland, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10843. [PMID: 36078560 PMCID: PMC9518466 DOI: 10.3390/ijerph191710843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The spatial distributions of Cr, Ni, Cu, Zn, As, Cd and Pb (potentially toxic elements, PTEs) in sediments and intrinsic influence factors from the Wuliangsuhai wetland of the Hetao Irrigation District, China were studied in this work. The results showed that excluding Zn, the total contents of other PTEs were higher than the background values, of which As (39.26 mg·kg-1) and Cd (0.44 mg·kg-1) were six-fold and seven-fold higher, respectively. Especially, the high levels of Cd (70.17%), Pb (66.53%), and Zn (57.20%) in the non-residual fraction showed high bioavailability and mobility. It indicated that PTEs can enter the food chain more easily and produce much toxicity. Based on Igeo, ICF, and MRI, the contamination of As was the most serious in the middle areas (MDP) of the wetland, and its risk was up to moderately strong. Cd and Pb posed moderate and considerate risk, respectively. Furthermore, 29.50% and 55.54% risk contribution ratio of As and Cd, respectively, showed that they were the dominant contaminants. In addition, the positive correlation between sand, OM, and total contents and chemical fractions of PTEs by using PCM, RDA, and DHCA indicated that physicochemical properties could significantly influence the spatial distributions of PTEs. The work was useful for assessing the level of pollution in the study area and acquiring information for future and possible monitoring and remediation activities.
Collapse
Affiliation(s)
- Huilan Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Piaopiao Liang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Xinglei Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yahong Bai
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yunxin Xing
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chunli Wei
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyuan Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yiming Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yu Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|