1
|
Chen W, Huangfu X, Liu Y, Huang Y, Zhang X, Wu S, Liu H, He Q. Sustained Tl(I) removal by α-MnO 2: Dual role of tunnel structure incorporation and surface catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137137. [PMID: 39793394 DOI: 10.1016/j.jhazmat.2025.137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Manganese oxide-based filtration technologies are considered cost-effective for thallium (Tl) removal in engineered systems. However, current gaps in understanding the heterogeneous adsorption and oxidation mechanisms of typical tunneled α-MnO2 may lead to a serious underestimation of its long-term Tl removal potential. In this study, α-MnO2 could continuously remove Tl(I) during the 584-h reaction, with its irreversible removal eventually increasing to 81 %-95 % in different anionic environments. The adsorbed low-loaded Tl(I) is preferentially oxidized, whereas the high-loaded Tl tends to be adsorbed in a nonoxidative pathway by α-MnO2. The nonoxidized Tl(I) was gradually immobilized in the stable thalliomelane-like tunnel structure. More importantly, the synergism of surface Mn(III)-oxygen vacancies (Ov) on α-MnO2 could catalyze the oxidation of Tl(I). Furthermore, the oxidized Tl(III) was bound to the tunnel surface via double edge-sharing and double corner-sharing. In addition, the phosphate anion occupied the surface active site and inhibited the oxidation of Tl(I), thereby reducing the binding strength of Tl. This study provides a new perspective on the effectiveness and stability of Tl(I) removal by MnO2 and highlights the neglected mechanism of Mn(III)-Ov mediating Tl(I) oxidation, which expands our understanding of the removal and transformation fate of Tl in MnO2-engineered systems.
Collapse
Affiliation(s)
- Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yu Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
3
|
Abbas N, Husnain SM, Asim U, Shahzad F, Abbas Y. A novel green synthesis of MnO 2-Coal composite for rapid removal of silver and lead from wastewater. WATER RESEARCH 2024; 256:121526. [PMID: 38583333 DOI: 10.1016/j.watres.2024.121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The presence of Ag(I) and Pb(II) ions in wastewater poses a significant threat to human health in contemporary times. This study aims to explore the development of a novel and economical adsorbent by grafting MnO2 particles onto low-rank coal, providing an innovative solution for the remediation of water contaminated with silver and lead. The synthesized nanocomposites, referred to as MnO2-Coal, underwent thorough characterization using FTIR, XRD, BET, and SEM to highlight the feasibility of in-situ surface modification of coal with MnO2 nanoparticles. The adsorption of Ag(I) and Pb(II) from their respective aqueous solution onto MnO2-Coal was systematically investigated, with optimization of key parameters such as pH, temperature, initial concentration, contact time, ionic strength, and competing ions. Remarkably adsorption equilibrium was achieved within a 10 min, resulting in impressive removal rates of 80-90 % for both Ag(I) and Pb(II) at pH 6. The experimental data were evaluated using Langmuir, Freundlich, and Temkin isotherm models. The Langmuir isotherm model proved to be more accurate in representing the adsorption of Ag(I) and Pb(II) ions onto MnO2-Coal, exhibiting high regression coefficients (R2 = 0.99) and maximum adsorption capacities of 93.57 and 61.98 mg/g, along with partition coefficients of 4.53 and 71.92 L/g for Ag(I) and Pb(II), respectively, at 293 K. Kinetic assessments employing PFO, PSO, Elovich, and IPD models indicated that the PFO and PSO models were most suitable for adsorption mechanism of Pb(II) and Ag(I) on MnO2-Coal composites, respectively. Moreover, thermodynamic evaluation revealed the spontaneous and endothermic adsorption process for Ag(I), while exothermic behavior for adsorption of Pb(II). Importantly, this approach not only demonstrates cost-effectiveness but also environmental friendliness in treating heavy metal-contamination in water. The research suggests the potential of MnO2-Coal composites as efficient and sustainable adsorbents for water purification applications.
Collapse
Affiliation(s)
- Naseem Abbas
- Institute of Chemical Sciences Bahauddin Zakariya University, Multan 60800, Punjab Pakistan
| | - Syed M Husnain
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, 45650 Pakistan.
| | - Umar Asim
- Institute of Chemical Sciences Bahauddin Zakariya University, Multan 60800, Punjab Pakistan; Department of Chemistry, Institute of Southern Punjab, Multan, 60750, Pakistan.
| | - Faisal Shahzad
- Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, 127788, Abu Dhabi, United Arab Emirates; Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| | - Yawar Abbas
- Research Scientist, Department of Physics, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Abdel Maksoud MIA, Murad GA, Hassan HS. Utilization of carbon-coated ZrO 2/Mn-Mg-Zn ferrites nanostructures for the adsorption of Cs (I) and Sr (II) from the binary system: kinetic and equilibrium studies. BMC Chem 2023; 17:149. [PMID: 37925482 PMCID: PMC10625698 DOI: 10.1186/s13065-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Carbon-coated ZrO2/Mn-Mg-Zn ferrites nanostructures (CZ-FN) have been prepared as a new inorganic sorbent to remove Cs (I) and Sr (II) from a waste stream. Adsorption of Cs (I) and Sr (II) has been implemented considering different noteworthy parameters, for example, shaking time and the optimum time achieved high adsorption capacity of both ions [103 and 41 mg/g for Sr (II) and Cs (I)] was found 30 min. Also, the impact of pH values was studied; the best pH value for the adsorption process is pH 6. The adsorption saturation capacity of CZ-FN is 420.22 and 250.45 mg/g for strontium and cesium, respectively. The solubility percentage of CZ-FN was calculated utilizing diverse molarities from HNO3, HCl, and NaOH as eluents, the obtained data reveals an increase in the solubility percentage with more increase in the molarity of the eluents. The elevation in the solubility percentage follows the following order; HNO3 < HCl < NaOH. The kinetic studies were applied using the nanolinear form of different kinetic models; it was found that the adsorption process obeys the nonlinear pseudo-second-order. According to equilibrium studies, the Langmuir model has been more accurate than the Freundlich model for adsorption in the case of binary systems. The values of Di for the strontium and cesium are 10-10 m2/s, which displays the chemisorption nature of this process. The greatest values of the desorption process for the strontium and cesium are 96.87% and 94.43 by 0.3 M of HNO3. This indicated that the carbon-coated ZrO2/Mn-Mg-Zn ferrites could be regenerated and recycled to remove strontium and cesium ions from waste streams.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - G A Murad
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority (EAEA), Inshas, 13759, Egypt.
| | - H S Hassan
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority (EAEA), Inshas, 13759, Egypt
| |
Collapse
|
5
|
Peng L, Guo L, Li J, Zhang W, Shi B, Liao X. Rapid and highly selective removal of cesium by Prussian blue analog anchored on porous collagen fibers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|