1
|
Yao G, Fang S, Yin P, Li A, Yang W, Wang H, Tan W. A colorimetric and fluorometric dual-mode probe for Cu 2+detection based on functionalized silver nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3466-3474. [PMID: 37589853 DOI: 10.1007/s11356-023-29343-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
A novel colorimetric/fluorescent probe (AgNPs-GSH-Rh6G2) was prepared by linking silver nanoparticles (AgNPs) with rhodamine 6G derivative (Rh6G2) using glutathione (GSH) as a linker molecule. The prepared probe showed obvious fluorescence change and colorimetric response after adding copper ions. Based on this phenomenon, a colorimetric/fluorescence dual-mode detection method was constructed to recognize copper ions. The linear ranges of fluorescence detection and colorimetric detection were 0.10 to 0.45 mM and 0.15 to 0.65 mM, respectively, and the limit of detection were 0.18 μM and 24.90 μΜ. In addition, the dual-mode probe has achieved satisfactory results in the detection of copper ions in sediment samples. The successful construction of AgNPs-GSH-Rh6G2 not only provide a reliable tool for the detection of copper ions, but also shed light on a new idea for the multi-mode development of the detection platform.
Collapse
Affiliation(s)
- Guixiang Yao
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Shuju Fang
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Pengyuan Yin
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Ailing Li
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Hongbin Wang
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Wei Tan
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Wang H, Lu M, Li G, Bai M, Yang W, Tan W, Li G. A dual-modality sensing probe of fluorescent and colorimetric for detection of cobalt ion based on silver nanoparticles functionalized rhodamine 6G derivatives. CHEMOSPHERE 2024; 362:142790. [PMID: 38971435 DOI: 10.1016/j.chemosphere.2024.142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The combination of fluorescent probe and colorimetric technique has become one of the most powerful analytical methods due to the advantages of visualization, minimal measurement errors and high sensitivity. Hence, a novel dual-modality sensing probe with both colorimetric and fluorescent capabilities was developed for detecting cobalt ions (Co2+) based on homocysteine mediated silver nanoparticles and rhodamine 6G derivatives probe (AgNPs-Hcy-Rh6G2). The fluorescence of the AgNPs-Hcy-Rh6G2 probe turned on due to the opening of the Rh6G2 spirolactam ring in the presence of Co2+ by a catalytic hydrolysis. The fluorescent intensity of probe is proportional to Co2+ concentration in the range of 0.10-50 μM with a detection limit of 0.05 μM (S/N = 3). More fascinatingly, the color of AgNPs-Hcy-Rh6G2 probe changed from colorless to pink with increasing Co2+ concentration, which allowing colorimetric determination of Co2+. The absorbance of AgNPs-Hcy-Rh6G2 probe is proportional to Co2+ concentration in the range from 0.10 to 25 μM with a detection limit of 0.04 μM (S/N = 3). This colorimetric and fluorescent dual-modal method exhibited good selectivity, and reproducibility and stability, holding great potential for real samples analysis in environmental and drug field.
Collapse
Affiliation(s)
- Yao Zhang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Mingrong Lu
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Gufeng Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Mei Bai
- The Ecological and Environmental Monitoring Station of DEEY, Wenshan, 663099, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Wei Tan
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China.
| | - Guizhen Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China.
| |
Collapse
|
3
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Yin P, Zou T, Yao G, Li S, He Y, Li G, Li D, Tan W, Yang M. In situ microwave-assisted preparation of NS-codoped carbon dots stabilized silver nanoparticles as an off-on fluorescent probe for trace Hg 2+ detection. CHEMOSPHERE 2023; 338:139451. [PMID: 37451632 DOI: 10.1016/j.chemosphere.2023.139451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
An off-on fluorescent probe (NS-CDs-AgNPs) was synthesized based on a one-pot microwave process by utilizing N, S co-doping carbon dots (NS-CDs) and silver nitrate as precursors. The significant peak of NS-CDs-AgNPs at 393 nm in ultraviolet spectrum indicated silver nanoparticle (AgNPs) were successfully synthesized. A faint blue fluorescence emission (442 nm) was displayed when excited NS-CDs-AgNPs at 371 nm. A remarkable fluorescence recovery was observed upon adding of trance Hg2+, whereas the other heavy metal ions did not elicit this response. The reason for this phenomenon was revealed in this work that a spontaneous redox reaction occurred between NS-CDs-AgNPs and Hg2+, which leaded to the formation of NS-CDs-Agn-2NPsHg complexes. On the basis of this mechanism, a new off-on fluorescent analytical method was constructed for Hg2+ detection with linear range of 10-400 nM (R2 = 0.9941), and the detection limit (LOD) of 5.16 nM. Additionally, satisfactory recovery (90.28%-106.13%) and the relative standard deviation (RSD) (RSD<5.21%) were obtained in water sample detection. More importantly, the NS-CDs-AgNPs exhibited lower cytotoxicity and better biocompatibility, indicating a huge potential in cell imaging and clinical medicine.
Collapse
Affiliation(s)
- Pengyuan Yin
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Tianru Zou
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guixiang Yao
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shaoqing Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Yanzhi He
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guizhen Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Da Li
- School of Mechanical and Electrical Engineering, Qingdao University, PR China.
| | - Wei Tan
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Min Yang
- School of Mechanical and Electrical Engineering, Qingdao University, PR China.
| |
Collapse
|
5
|
Xie R, Su D, Song Y, Sun P, Mao B, Tian M, Chai F. The synthesis of gold nanoclusters with high stability and their application in fluorometric detection for Hg 2+ and cell imaging. Talanta 2023; 260:124573. [PMID: 37105084 DOI: 10.1016/j.talanta.2023.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Sensing Hg2+ is significant to protecting human health and environmental ecosystems, for its toxicity and genotoxicity. Here, highly stable fluorescent folic acid (FA)-protected Au nanoclusters (FA-AuNCs) were synthesized by optimizing the reactive parameters with high quantum yield of 34.7%. Main components of Au4L were confirmed by MALDI-TOF, and the electron-rich residues of FA shell enabled FA-AuNCs excellent photostability. FA-AuNCs exhibited sensitive response behavior to Hg2+ with a minimum detectability of 1.3 nM, and presented extreme effect to the detection of Hg2+ in real water. Notably, the cellular imaging and in-situ detection of Hg2+ in cells can be achieved visually. The high selectivity was attributed to the chemical bond formed between Au+ (4f145d10) and Hg2+ (4f145d10). And the internal filter effect and static quenching effect were proved triggering the quenching of FA-AuNCs. The ultra-stable FA-AuNCs provide a potential promising opportunity for the in-situ tracing Hg2+ from environmental and biological samples.
Collapse
Affiliation(s)
- Ruyan Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
| | - Dongyue Su
- School of Environmental Science, Liaoning University, Shenyang, Liaoning, 110036, China.
| | - Ying Song
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
| | - Peng Sun
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials.
| |
Collapse
|
6
|
Manjubaashini N, Daniel Thangadurai T. Unaided-eye detection of diverse Metal ions by AuNPs-based Nanocomposites: A Review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|