1
|
Yang Z, Yang J, Yang H, Gao F, Nan C, Chen R, Zhang Y, Gao X, Yuan Y, Jia Y, Yang Y. Photoelectrocatalytic CO 2 Reduction to Formate Using a BiVO 4/ZIF-8 Heterojunction. Chempluschem 2025; 90:e202400452. [PMID: 39307837 DOI: 10.1002/cplu.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Indexed: 11/09/2024]
Abstract
Converting CO2 into high-value chemical fuels through green photoelectrocatalytic reaction path is considered as a potential strategy to solve energy and environmental problems. In this work, BiVO4/ZIF-8 heterojunctions are prepared by in-situ synthesis of ZIF-8 nanocrystals with unique pore structure on the surface of BiVO4. The experimental results show that the silkworm pupa-like BiVO4 is successfully combined with porous ZIF-8, and the introduction of ZIF-8 can provide more sites for CO2 capture. The optimal composite ratio of 4 : 1-BiVO4/ZIF-8 exhibits excellent CO2 reduction activity and the lowest electrochemical transport resistance. In the electrocatalytic system, the formate Faraday efficiency of 4 : 1-BiVO4/ZIF-8 at -1.0 V vs. RHE is 82.60 %. Furthermore, in the photoelectrocatalytic system, the Faraday efficiency increases to 91.24 % at -0.9 V vs. RHE, which is 10.8 times higher than the pristine BiVO4. The results show that photoelectric synergism can not only reduce energy consumption, but also improve the Faraday efficiency of formate. In addition, the current density did not decrease during 34 h electrolysis, showing long-term stability. This work highlights the importance of the construction of heterojunction to improve the performance of photoelectrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Zhi Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Academy of Building Sciences Group Co.,LTD., Taiyuan, China
| | - Jiaqi Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huimin Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Fanfan Gao
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Cheng Nan
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rui Chen
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yi Zhang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuemei Gao
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yue Yuan
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yibo Jia
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yuanjing Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
2
|
Kolhe ND, Walekar LS, Kadam AN, Kulkarni MA, Parbat HA, Misra M, Lokhande BJ, Lee SW, Patil V, Mhamane D, Mali MG. Facile construction of multifunctional xNiCo 2O 4/BiVO 4 heterojunction with accelerated charge transfer for efficient photocatalytic treatment of Cr (VI), MB and TC under visible light. CHEMOSPHERE 2024; 352:141353. [PMID: 38307337 DOI: 10.1016/j.chemosphere.2024.141353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/09/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024]
Abstract
The release of industrial effluents, comprising of organic dyes, antibiotics, and heavy metals poses substantial environmental and ecological threats. Among the different approaches, the utilization of heterogeneous photocatalysis based on semiconducting metal oxides is of paramount important to removal of organic ( MB dye and TC antibiotic) and inorganic pollutants ( Cr (VI) ) in wastewater. In this work, a new approach for creating type-II heterojunction photocatalysts named xNiCo2O4/BiVO4 or BNC is suggested. The as-prepared samples were thoroughly examined by means of several sophisticated analytical tools to investigate their physicochemical properties. These composites were utilized in the decomposition of MB dye, TC drug and the reduction of Cr (VI) under visible light irradiation. According to the findings, the creation of type-II heterojunction at BiVO4-NiCo2O4 interface greatly improved charge transportation while successfully preventing electron-hole recombination. Among the various composites studied, BNC-2 demonstrated an enhanced photocatalytic activity towards degradation of MB and TC, which were found to be 91 % over a period of 150 min and 95 % within only 60 min, respectively. Moreover, the photocatalytic reduction of Cr (VI) was accomplished 96 % within just 25 min. Additionally, it is discovered that BNC-2 displayed promising photostability and recyclability with a retention of >90 % after five consecutive cycles. The enhanced photocatalytic activity of BNC-2 is evidently attributed to the expedited separation and transfer of charges, as proven by photocurrent measurement, photoluminescence and electrochemical impedance spectroscopy analyses. Hence, the current amalgamation of NiCo2O4 and BiVO4 heterojunction composite has paved novel paths towards photocatalytic removal of organic as well as inorganic contaminants.
Collapse
Affiliation(s)
- Nagesh D Kolhe
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India
| | - Laxman S Walekar
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India
| | - Abhijit N Kadam
- Department of Chemistry, John Wilson Education Society's, Wilson College (Autonomous), Mumbai, Maharashtra, 400007, India; Department of Chemical and Biological Engineering, Gachon University-1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, South Korea
| | - Makarand A Kulkarni
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India
| | - Harichandra A Parbat
- Department of Chemistry, John Wilson Education Society's, Wilson College (Autonomous), Mumbai, Maharashtra, 400007, India
| | - Mrinmoy Misra
- Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur, India
| | - Balkrishna J Lokhande
- School of Physical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413 255, Maharashtra, India
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University-1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, South Korea
| | - Vaishali Patil
- Engineering and Applied Science Department, Vishwakarma Institute of Information Technology, Pune, Maharashtra, 411 048, India
| | - Dattakumar Mhamane
- Department of Chemistry, Sangameshwar College (Autonomous), Solapur, 413001, Maharashtra, India.
| | - Mukund G Mali
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India.
| |
Collapse
|
3
|
Bathula B, Eadi SB, Lee HD, Yoo K. ZnWO 4 nanorod-colloidal SnO 2 quantum dots core@shell heterostructures: Efficient solar-light-driven photocatalytic degradation of tetracycline. ENVIRONMENTAL RESEARCH 2023; 228:115851. [PMID: 37062476 DOI: 10.1016/j.envres.2023.115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Zinc tungsten oxide (ZW) and colloidal SnO2 quantum dots (CS) were synthesized individually by hydrothermal and wet chemical methods. ZW-CS core@shell nanorods were prepared using a sonochemical method for the enhanced photocatalytic activity of tetracycline (TC) degradation. ZW-CS core@shell nanorods were systematically characterized by structural, morphological mapping and optical techniques. All characterization techniques were synchronized to confirm the construction of core@shell nanorods. Optical absorption studies indicate an increased light-capturing efficiency along with a reduced bandgap from 3.56 to 3.23 eV, which is further supported by photoluminescence. Mapping analysis from SEM and HR-TEM evidence the presence of elements as well as a core@shell nanostructure. The optimized sample of ZW-CS 1.0 shows improved photocatalytic degradation of TC under stimulated solar light. The TC degradation efficiency by ZW-CS 1.0 core@shell nanorods was about 97% within 2 h. The formation of core@shell nanorod structure might be the reason for the better photocatalytic tetracycline degradation performance.
Collapse
Affiliation(s)
- Babu Bathula
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Kisoo Yoo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
4
|
Song D, Li M, Liao L, Guo L, Liu H, Wang B, Li Z. High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1841. [PMID: 37368271 DOI: 10.3390/nano13121841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Semiconductor photocatalysts are essential materials in the field of environmental remediation. Various photocatalysts have been developed to solve the contamination problem of norfloxacin in water pollution. Among them, a crucial ternary photocatalyst, BiOCl, has attracted extensive attention due to its unique layered structure. In this work, high-crystallinity BiOCl nanosheets were prepared using a one-step hydrothermal method. The obtained BiOCl nanosheets showed good photocatalytic degradation performance, and the degradation rate of highly toxic norfloxacin using BiOCl reached 84% within 180 min. The internal structure and surface chemical state of BiOCl were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance (UV-vis), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectra (XPS), and photoelectric techniques. The higher crystallinity of BiOCl closely aligned molecules with each other, which improved the separation efficiency of photogenerated charges and showed high degradation efficiency for norfloxacin antibiotics. Furthermore, the obtained BiOCl nanosheets possess decent photocatalytic stability and recyclability.
Collapse
Affiliation(s)
- Dongxue Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Mingxia Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liping Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haixia Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bo Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Lee JH, Jeong SY, Son YD, Lee SW. Facile Fabrication of TiO 2 Quantum Dots-Anchored g-C 3N 4 Nanosheets as 0D/2D Heterojunction Nanocomposite for Accelerating Solar-Driven Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091565. [PMID: 37177110 PMCID: PMC10180858 DOI: 10.3390/nano13091565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
TiO₂ semiconductors exhibit a low catalytic activity level under visible light because of their large band gap and fast recombination of electron-hole pairs. This paper reports the simple fabrication of a 0D/2D heterojunction photocatalyst by anchoring TiO₂ quantum dots (QDs) on graphite-like C₃N₄ (g-C₃N₄) nanosheets (NSs); the photocatalyst is denoted as TiO₂ QDs@g-C₃N₄. The nanocomposite was characterized via analytical instruments, such as powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, t orange (MO) under solar light were compared. The TiO₂ QDs@g-C₃N₄ photocatalyst exhibited 95.57% MO degradation efficiency and ~3.3-fold and 5.7-fold higher activity level than those of TiO₂ QDs and g-C₃N₄ NSs, respectively. Zero-dimensional/two-dimensional heterojunction formation with a staggered electronic structure leads to the efficient separation of photogenerated charge carriers via a Z-scheme pathway, which significantly accelerates photocatalysis under solar light. This study provides a facile synthetic method for the rational design of 0D/2D heterojunction nanocomposites with enhanced solar-driven catalytic activity.
Collapse
Affiliation(s)
- Jin-Hyoek Lee
- Chemical and Biological Engineering Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sang-Yun Jeong
- Chemical and Biological Engineering Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Young-Don Son
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sang-Wha Lee
- Chemical and Biological Engineering Department, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Gao J, Zhang S, Ma X, Sun Y, Zhang X. Two-Dimensional Sb Modified TiO 2 Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1293. [PMID: 37049386 PMCID: PMC10096649 DOI: 10.3390/nano13071293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
As one of the widely studied semiconductor materials, titanium dioxide (TiO2) exhibits high photoelectrochemical (PEC) water-splitting performance as well as high chemical and photo stability. However, limited by a wide band gap and fast electron-hole recombination rate, the low solar-to-hydrogen conversion efficiency remains a bottleneck for the practical application of TiO2-based photoelectrodes. To improve the charge separation and water oxidation efficiency of TiO2 photoanodes, antimonene, a two-dimensional (2D) material obtained by liquid-phase exfoliation, was assembled onto TiO2 nanorod arrays (TNRAs) by a simple drop-coating assembly process. PEC measurements showed that the resulting 2D Sb/TiO2 photoelectrode displayed an enhanced photocurrent density of about 1.32 mA cm-2 in 1.0 M KOH at 0.3 V vs. Hg/HgO, which is ~1.65 times higher than that of the pristine TNRAs. Through UV-Vis absorption and electrochemical impedance spectroscopy measurements, it was possible to ascribe the enhanced PEC performances of the 2D Sb/TiO2 photoanode to increased absorption intensity in the visible light region, and improved interfacial charge-transfer kinetics in the 2D Sb/TiO2 heterojunction, which promotes electron-hole separation, transfer, and collection.
Collapse
Affiliation(s)
- Jie Gao
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shengqi Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaoqing Ma
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yi Sun
- Aerospace Hydrogen Energy (Shanghai) Technology Co., Ltd., Shanghai 200241, China
- Power-Sources of Space-Sources Technology, Shanghai Institute of Space State Key Laboratory, Shanghai 200233, China
| | - Xiaoyan Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Wang W, Liu X, Jing J, Mu J, Wang R, Du C, Su Y. Photoelectrocatalytic peroxymonosulfate activation over CoFe2O4-BiVO4 photoanode for environmental purification: Unveiling of multi-active sites, interfacial engineering and degradation pathways. J Colloid Interface Sci 2023; 644:519-532. [PMID: 37032247 DOI: 10.1016/j.jcis.2023.03.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
This work reported on the development of CoFe2O4-BiVO4 photoanode based photoelectrocatalytic system collaborating with peroxymonosulfate activation for organic contaminants removal. CoFe2O4 layer not only provided active sites for direct peroxymonosulfate activation but also accelerated charge separation process for the enhancement of photocurrent density and photoelectrocatalytic performance. Junction of CoFe2O4 layer on BiVO4 photoanode led to the improvement of photocurrent density to 4.43 mA/cm2 at 1.23 VRHE, which was approximately 4.06 times higher than that of pure BiVO4. Subsequently, the corresponding optimal degradation efficiency toward the tetracycline model contaminant achieved to be 89.1% with total organic carbon removal value of about 43.7% within 60 min. Moreover, the degradation rate constant of CoFe2O4-BiVO4 photoanode in photoelectrocatalytic system was 0.037 min-1, which was about 1.23, 2.64 and 3.70 times higher than the values in photocatalysis, electrocatalysis and PMS only based systems, respectively. In addition, radical scavenging experiments and electron spin resonance spectra indicated a synergy of radical and nonradical coupling process where •OH and 1O2 played vital roles during tetracycline degradation. Plausible photoelectrocatalytic mechanism and degradation pathway were proposed. This work provided an effective strategy to construct peroxymonosulfate assisted photoelectrocatalytic system toward green environmental applications.
Collapse
Affiliation(s)
- Weihong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xudong Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Jianfang Jing
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Jiarong Mu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ruixi Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
8
|
Cai H, Cheng L, Chen H, Dou R, Chen J, Zhao Y, Li F, Fang Z. Facile Phase Control and Photocatalytic Performance of BiVO 4 Crystals for Methylene Blue Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3093. [PMID: 36833787 PMCID: PMC9964532 DOI: 10.3390/ijerph20043093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants, which mainly exist as organic pollutants and pose adverse biological effects, could be removed using photocatalytic degradation, resulting in a low-cost and environmentally friendly solution. Herein, BiVO4 nanoparticles with different morphologies and photocatalytic performances were synthesized by hydrothermal treatment at different residence times. The XRD and SEM results indicate that the crystal phase of BiVO4 gradually transformed from a single tetragonal phase to a single monoclinic crystal phase as the hydrothermal time increased, and with the extension of the hydrothermal time, the morphology of BiVO4 nanoparticles gradually differentiated from a smooth spherical shape to flower-like shapes composed of polyhedrons; the size of the crystals also increased accordingly. Methylene blue (MB), used as a probe of organic pollutants, was degraded under visible light irradiation by all BiVO4 samples to investigate its photocatalytic activities. The experimental results show that the longer the hydrothermal time, the better the photocatalytic performance. The optimum hydrothermal time was 24 h, at which the sample showed the highest photocatalytic activity for MB degradation. This work shows a convenient strategy for control of the crystal phase of BiVO4-based photocatalysts based on the understanding of the crystal morphology evolution mechanism, which will benefit the researchers in designing new BiVO4-based photocatalysts with high efficiency for emerging contaminants' degradation.
Collapse
Affiliation(s)
- Heshan Cai
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Linmei Cheng
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Huacong Chen
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Rongni Dou
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yuxin Zhao
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Fuhua Li
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Zheng Fang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| |
Collapse
|
9
|
Enhanced Photoredox Activity of BiVO4/Prussian Blue Nanocomposites for Efficient Pollutant Removal from Aqueous Media under Low-Cost LEDs Illumination. Catalysts 2022. [DOI: 10.3390/catal12121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bismuth vanadate (BiVO4, BV) is a widely explored photocatalyst for photo(electro)chemical applications, but its full photocatalytic potential is hindered by the fast recombination and low mobility of photogenerated charge carriers. Herein, we propose the photodeposition of different amounts of Prussian blue (PB) cocatalysts on the surface of monoclinic BV to obtain BV-PB composite photocatalysts with increased photoactivity. The as-prepared BV and BV-PB composites were characterized by an array of analytic techniques such scanning eletron microscopy (SEM), transmission eletron microscopy (TEM), X-day diffraction (XRD), and spectroscopic techniques including Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photoluminescence (PL), and Raman spectroscopy. The addition of PB not only increases the absorption of visible light, as indicated by DRS, but also improves the charge carriers’ transfer across the photocatalysts/solution interface and hence reduces electron-hole (e−-h+) recombination, as confirmed by EIS and PL measurements. Resultantly, the BV-PB composite photocatalysts with optimum PB loading exhibited enhanced Cr(VI) photoreduction efficiency as compared to pristine BV under visible light illumination from low-power blue light-emitting diodes (LEDs), thanks to the cocatalyst role of PB which mediates the transfer of photoexcited conduction band (CB) electrons from BV to Cr(VI) species in solution. Moreover, as compared to pristine BV and BV + H2O2, a drastic increase in the methylene blue (MB) photo-oxidation efficiency was observed for BV-PB in the presence of a minute quantity of H2O2 due to a synergic effect between the photocatalytic and Fenton-like processes. While pure BV photodegraded around 70% of MB dye within 120 min, the BV-PB/H2O2 and BV/H2O2 system could degrade almost 100% of the dye within 20 min (kobs. = 0.375 min−1) and 40 min (kobs. = 0.055 min−1), respectively. The practical approach employed in this work may pioneer new prospects for synthesizing new BV-based photocatalytic systems with low production costs and high photoredox efficiencies.
Collapse
|