1
|
Yan Z, Xie S, Yang M. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11886-11897. [PMID: 38225488 DOI: 10.1007/s11356-023-31057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024]
Abstract
The wastewater from organic peroxide production has high chemical oxygen demand (COD) concentration and poor biodegradability, so it is necessary to find a cost-effective treatment method. The iron-carbon microelectrolysis (IC-ME) technology was used to pretreat the organic peroxide production wastewater, and the influence of reaction conditions on the removal effect of pollutants and the degradation mechanism were studied. The effects of initial pH, iron filings, iron-carbon ratio, and reaction time on the wastewater treatment were investigated by single-factor and response surface optimization experiments, and the degradation mechanism was analyzed by three-dimensional fluorescence spectroscopy, UV-Vis, and gas chromatography mass spectrometry (GC-MS). The experimental results showed that the COD removal efficiency was 35.67% and the biodegradability of wastewater was increased from 0.113 to 0.173 under the conditions of initial pH of 3.1, the dosage of iron filings of 30.5 g/L, the ratio of iron-carbon of 1.01, and the reaction time of 122.8 min, and the process of IC-ME for degrading COD of wastewater from the production of organic peroxide was consistent with the secondary reaction. The IC-ME process could decompose macromolecular organic compounds such as tyrosine proteins and aromatic proteins, and improve the biodegradability of wastewater. It provides a theoretical reference for the practical application of IC-ME to treat this type of wastewater.
Collapse
Affiliation(s)
- Zichun Yan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou, 730070, China
| | - Shilong Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Mingxia Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Kreutz GK, Borba FH, Baroni S, Mayer I, Seibert D, Inticher JJ, Zorzo CF, Guimarães RE. Reduction of the environmental impact of wastewater from the pretreatment of biodiesel production: A hybrid proposal for decontamination via photo-electro-Fenton/Fered/O 3. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118080. [PMID: 37196625 DOI: 10.1016/j.jenvman.2023.118080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Complex wastewater is generated during biodiesel production. We propose a new solution for the treatment of wastewater from enzymatic pretreatment of biodiesel production (WEPBP) by using a hybrid system based on the photo-Fered-Fenton process with O3 assistance (PEF-Fered-O3). We applied response surface methodology (RSM) to determine the suitable conditions for the PEF-Fered-O3 process: a current intensity of 3 A, an initial solution pH controlled at 6.4, an initial H2O2 concentration of 12,000 mg L-1, and an O3 concentration of 50 mg L-1. We performed three new experiments under similar conditions with slight changes to the conditions, namely a longer reaction time (120 min) and single or periodic H2O2 addition (i.e., small H2O2 additions at different reaction times). Periodic H2O2 addition provided the best removal results probably by reducing the occurrence of undesired side reactions that cause hydroxyl radical (•OH) scavenging. With the application of the hybrid system, the chemical oxygen demand (COD) and total organic carbon (TOC) decreased by 91% and 75%, respectively. We also evaluated the presence of metals such as iron, copper, and calcium; electric conductivity; and voltage at 5, 10, 15, 30, 45, 60, 90, and 120 min. We submitted raw and treated WEPBP sludge samples to X-ray diffraction to study the degree of crystallinity. There was a rearrangement of the compounds present in treated WEPBP, possibly caused by oxidation of a large fraction of organic matter. Finally, we evaluated the genotoxicity and cytotoxicity of WEPBP by using Allium cepa meristematic root cells. Treated WEPBP was less toxic to these cells, denoted by improvements in gene regulation and cell morphology. Given the current scenario for the biodiesel industry, applying the proposed hybrid PEF-Fered-O3 system at suitable conditions provides an efficient alternative to treat a complex matrix, namely WEPBP, to reduce its potential to cause abnormalities in the cells of living organisms. Thus, the negative impacts of the discharge of WEPBP in the environment might be reduced.
Collapse
Affiliation(s)
- Gustavo K Kreutz
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil.
| | - Suzymeire Baroni
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Ildemar Mayer
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Daiana Seibert
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Jonas J Inticher
- Postgraduate Program of Chemical Engineering, West Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, 85903-000, Toledo, PR, Brazil
| | - Camila F Zorzo
- Federal University of Rio Grande do Sul, Hydraulic Research Institute, Postal code 15029, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Raíssa E Guimarães
- Federal University of Rio Grande do Sul, Hydraulic Research Institute, Postal code 15029, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|