1
|
Hou T, Lu S, Shao J, Dong X, Yang Z, Yang Y, Yao D, Lin Y. Assessment of planktonic community diversity and stability in lakes and reservoirs based on eDNA metabarcoding--A case study of Minghu National Wetland Park, China. ENVIRONMENTAL RESEARCH 2025; 271:121025. [PMID: 39920970 DOI: 10.1016/j.envres.2025.121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/17/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
To evaluate the potential differences in plankton diversity and stability within freshwater lake and reservoir ecosystems, this study employed eDNA metabarcoding to analyze the diversity, assembly mechanisms, stability, and environmental drivers of plankton communities in natural water (Y region) and artificial lake water (M region) at Liupanshui Minghu National Wetland Park, Guizhou Province, China. The study revealed notable regional variations in plankton diversity and assembly mechanisms. Specifically, Shannon, Simpson, and Pielou's evenness indices were higher in the M region, suggesting a more complex species composition compared to the Y region. Analysis of community assembly mechanisms indicated that both regions were influenced by a combination of stochastic and deterministic processes, with stochastic processes serving as the dominant driver. Through LEfSe analysis, Random Forest predictions, and molecular ecological network evaluations, certain OTUs identified as "dual-characteristic" species were consistently highlighted. These species may play a critical role in shaping community composition and contributing to stability. Environmental drivers further clarified these differences. Redundancy analysis (RDA) demonstrated that TDS was the primary factor driving regional differences in key zooplankton species, while EC and DO were significant factors influencing the distribution of key phytoplankton species. Stability assessments, which combined molecular ecological network analysis and the coefficient of variation in species population density, revealed higher stability in the Y region. This indicates that the natural water system (Y region) has a greater resistance to disturbances compared to the artificial system in the M region. The findings provide fundamental support for assessing the health of aquatic ecosystems, as well as for the effective monitoring and biodiversity conservation of lake and reservoir ecosystems.
Collapse
Affiliation(s)
- Tianye Hou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Shengchao Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Jian Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Xianghong Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Zuchang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Yuanwei Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Dengdiao Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China
| | - Yanhong Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, 550025, Guiyang, China; Laboratory of Fishery Resources and Environmental Protection, 550025, Guiyang, China; College of Animal Science, Guizhou University, 550025, Guiyang, China; Special Fishes Research Institute, Guizhou University, 550025, Guiyang, China.
| |
Collapse
|
2
|
Zhang Y, Yu H, Liu J, Guo Y. Analysis of water quality and the response of phytoplankton in the low-temperature environment of Majiagou Urban River, China. Heliyon 2024; 10:e25955. [PMID: 38375249 PMCID: PMC10875424 DOI: 10.1016/j.heliyon.2024.e25955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
Majiagou River, a crucial urban river in Harbin, traverses densely populated areas including agricultural, suburban, and main urban areas, presenting highly intricate habitat characteristics. In recent years, urbanization has significantly intensified human interference, fundamentally reshaping the phytoplankton community. Understanding the response mechanism of phytoplankton to environmental factors is of paramount importance as they serve as primary producers in aquatic ecosystems. To investigate this, we established 25 sampling sites to analyze the phytoplankton community and 14 key physicochemical parameters, such as total phosphorus (TP) and total nitrogen (TN). Utilizing hierarchical clustering analysis (HCA) and One-way Analysis of Variance (ANOVA), we identified distinct river segments, revealing spatial distribution differences and environmental factor variations among phytoplankton species across segments. By adopting redundancy analysis (RDA), we pinpointed the primary environmental factors impacting phytoplankton communities and examined the correlation between phytoplankton and these factors to elucidate the driving mechanisms governing phytoplankton dynamics. The outcomes demonstrated that the phytoplankton community in Majiagou River was predominantly composed of Bacillariophyta and Chlorophyta, however, notable disparities in spatial distribution and species composition resulting from human interference were evident. Areas with intense human disturbance were dominated by diatoms and exhibited trends of homogenization and reduced biodiversity. RDA showed that pH, NH4+-N, NH3-N, chemical oxygen demand (COD), and TP were key environmental factors influencing phytoplankton communities. We have confirmed that due to variations in environment conditions and different levels of human disturbance, there will be some differences in the critical limiting factors affecting phytoplankton. Our study offers valuable insights for governing urban rivers during the low-temperature period.
Collapse
Affiliation(s)
- Yongxin Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Jiamin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Yao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
3
|
Satybaldiyev B, Ismailov B, Nurpeisov N, Kenges K, Snow DD, Malakar A, Uralbekov B. Evaluation of dissolved and acid-leachable trace element concentrations in relation to practical water quality standards in the Syr Darya, Aral Sea Basin, South Kazakhstan. CHEMOSPHERE 2023; 313:137465. [PMID: 36481171 DOI: 10.1016/j.chemosphere.2022.137465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The Syr Darya is one of the major rivers supplying the Aral Sea with freshwater. Soviet programs aimed at maximizing agricultural productivity in the Syr Darya basin increased diversion of water drastically affecting its water quality with significant consequences to its suitability for irrigation, fisheries and other uses. While water quality standards for trace elements are typically measured in the dissolved phase, there is evidence that adsorbed phases may also be relevant. Here we report potentially available heavy metals and metalloid concentrations in the Syr Darya water through the treatment of unfiltered waters samples with dilute nitric acid. Significant differences were found for most studied elements (Mann-Whitney U Test, p < 0.05) between their dissolved and acid-leachable concentrations. For Sr and Se in both sampling campaigns, no significant differences were found between their dissolved and acid-leachable concentrations, indicating their low geochemical reactivity. Dissolved V concentrations and acid-leachable Ni and Zn were found to exceed Kazakhstan Maximum Permissible Concentrations (MPC) values for the protection of fishery water quality. Our study evaluates the importance of considering regulatory issues of measuring trace metal concentrations to assess the water suitability for fisheries and irrigation.
Collapse
Affiliation(s)
- Bagdat Satybaldiyev
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan
| | - Baimurat Ismailov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan
| | - Nurbek Nurpeisov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Kairat Kenges
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 135 Keim Hall, University of Nebraska, Lincoln, NE, 68583-0844, USA
| | - Arindam Malakar
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 135 Keim Hall, University of Nebraska, Lincoln, NE, 68583-0844, USA
| | - Bolat Uralbekov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan.
| |
Collapse
|
5
|
Ge Y, Wu N, Abuduwaili J, Kulmatov R, Issanova G, Saparov G. Identifying Seasonal and Diurnal Variations and the Most Frequently Impacted Zone of Aerosols in the Aral Sea Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14144. [PMID: 36361020 PMCID: PMC9657130 DOI: 10.3390/ijerph192114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
With the desiccation of the Aral Sea, salt-alkali dust storms have increased in frequency and the surrounding environment has deteriorated. In order to increase our understanding of the characteristics and potential impact zone of atmospheric aerosols in the Aral Sea region, we evaluated seasonal and diurnal variation of aerosols and identified the zone most frequently impacted by aerosols from the Aral Sea region using CALIPSO data and the HYSPLIT model. The results showed that polluted dust and dust were the two most commonly observed aerosol subtypes in the Aral Sea region with the two accounting for over 75% of observed aerosols. Occurrence frequencies of polluted dust, clean continental, polluted continental/smoke, and elevated smoke showed obvious seasonal and diurnal variations, while occurrence frequency of dust only showed obvious seasonal variation. Vertically, the occurrence frequencies of all aerosol subtypes except dust showed significant diurnal variation at all levels. The thickness of polluted dust layers and dust layers exhibited same seasonal and diurnal variations with a value of more than 1.0 km year-round, and the layer thickness of clean continental and polluted continental/smoke shared the same seasonal and diurnal variation features. The zone most severely impacted by aerosols from the Aral Sea region, covering an area of approximately 2 million km2, was mainly distributed in the vicinity of the Aral Sea region, including western Kazakhstan, and most of Uzbekistan and Turkmenistan. The results provide direct support for positioning monitoring of aeolian dust deposition and human health protection in the Aral Sea region.
Collapse
Affiliation(s)
- Yongxiao Ge
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Wu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rashid Kulmatov
- Department of Biology, National University of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Gulnura Issanova
- CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
- Kazakh Research Institute of Soil Science and Agrochemistry Named after U.U.Uspanov, Almaty 050060, Kazakhstan
- Faculty of Geography and Environmental Sciences, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Galymzhan Saparov
- CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
- Kazakh Research Institute of Soil Science and Agrochemistry Named after U.U.Uspanov, Almaty 050060, Kazakhstan
| |
Collapse
|