1
|
Hussain Z, Khalid R, Mujahid A, Bock U, Din MI. Microwave modified sugar cane bagasse cellulose as an eco-friendly biosorbent for eliminating As(V) from aqueous medium. Int J Biol Macromol 2025; 311:144028. [PMID: 40345292 DOI: 10.1016/j.ijbiomac.2025.144028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
This work explores the potential of microwave assisted urea modified sugarcane bagasse (UMSCB) as an effective, environment-friendly biosorbent for removing As(V) from an aqueous medium. The synthesized biomaterial was characterized by FTIR analysis that showed the existence of various carboxyl, hydroxyl, and carbonyl functional groups; and SEM analysis of UMSCB showed much higher roughness before the As(V) adsorption of 40.78; indicating that As(V) intricately gets adsorbed onto surface of UMSCB. Batch adsorption experiments demonstrated a removal efficiency of approximately 95 % within 30 min at pH 5. However, UMSCB follows pseudo-second-order kinetics and chemisorption mechanism for removal of As(V). The intra-particle diffusion model indicated that more than one step influences the rate-limiting step. Adsorption equilibrium data shows that the Langmuir model provided the best fit, as determined by correlation coefficient (R2) and chi-square (χ2). Notably, the adsorption capacity (qe) of unmodified sugarcane bagasse (SCB) significantly increased from 4.8 mg/g to 52.8 mg/g upon microwave-assisted urea modification, demonstrating the substantial enhancement in As(V) uptake. Thermodynamic indicators indicated that the biosorption is spontaneous, endothermic, and feasible. The high adsorption efficiency, ease of regeneration, and potential for large-scale application highlight UMSCB as a promising solution for As(V) removal from wastewater.
Collapse
Affiliation(s)
- Zaib Hussain
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Rida Khalid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Arslan Mujahid
- Department of Analytical and Ecological Chemistry, Trier University, 54296 Trier, Germany.
| | - Udo Bock
- Department of Analytical and Ecological Chemistry, Trier University, 54296 Trier, Germany; Department of Environmental Toxicology, Trier University, 54296 Trier, Germany.
| | - Muhammad Imran Din
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
2
|
Hafez EM, Alharbi K, Gharib HS, Omara AED, Elatafi E, Hamada MM, Rashwan E, Alshaal T. Synergistic Effect of Sugarcane Bagasse and Zinc Oxide Nanoparticles on Eco-Remediation of Cadmium-Contaminated Saline Soils in Wheat Cultivation. PLANTS (BASEL, SWITZERLAND) 2024; 14:85. [PMID: 39795345 PMCID: PMC11722730 DOI: 10.3390/plants14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha-1) and ZnO NPs (0, 12.5, and 25 mg L-1) significantly improved key soil physicochemical properties, including soil pH, electrical conductivity (EC), and exchangeable sodium percentage (ESP). The combined application of SCB and ZnO NPs significantly mitigated the effects of Cd and salinity on soil and wheat plants. SCB (10 t ha-1) reduced soil pH by 6.2% and ESP by 30.8% compared to the control, while increasing microbial biomass by 151.1%. ZnO NPs (25 mg L-1) reduced Cd accumulation in wheat shoots by 43.3% and seeds by 46.3%, while SCB and ZnO NPs combined achieved a reduction of 74.1% and 62.9%, respectively. These amendments enhanced antioxidant enzyme activity, with catalase (CAT) increasing by 35.3% and ascorbate peroxidase (APX) by 54.9%. Wheat grain yield increased by 42% with SCB alone and by 75.2% with combined SCB and ZnO NP treatment, underscoring their potential as eco-friendly soil amendments for saline, Cd-contaminated soils. These results underscore the potential of SCB and ZnO NPs as eco-friendly amendments for improving wheat productivity in contaminated soils, offering a promising strategy for sustainable agriculture in salt-affected areas.
Collapse
Affiliation(s)
- Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Khadiga Alharbi
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany S. Gharib
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Essam Elatafi
- Department of Pomology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Maha M. Hamada
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
3
|
Santacruz-Salas AP, Antunes MLP, Rangel EC, Watanabe CH, Rosa AH. Plasma-engineered sugarcane bagasse: a novel strategy for efficient mercury removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65606-65626. [PMID: 39589416 DOI: 10.1007/s11356-024-35585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Metal ion adsorption using agro-industrial residues has shown promising results in remediating contaminated waters. However, adsorbent effectiveness relies on their properties, often necessitating processing for modification. Considering this, plasma treatment is effective in modifying material surfaces physically and chemically. This study investigated the modification of sugarcane bagasse (SB) using plasma treatment and evaluated its efficacy as a novel adsorbent for mercury removal from aqueous solutions. SB underwent low-temperature plasma treatment with sulfur hexafluoride (SF6) as the working gas, varying treatment times (2, 30, and 60 min), and fixed powers (80, 190, and 300 W) at 16 Pa pressure. Characterization via SEM/EDS, FTIR, XPS, and pHpzc revealed significant structural changes like increased in porosity and alteration in proportion atomic. Additionally, the successful incorporation of fluorine was confirmed in all treatment conditions, while sulfur was detected in only some samples. Amongst the tested conditions, the SB treated with 300 W for 60 min demonstrated the highest mercury removal efficiency, achieving an impressive 83.67% removal rate compared to untreated SB, which yielded only 57.95%. The adsorption mechanism exhibited both physical and chemical behavior, with chemisorption being the dominant process. The Freundlich model provided the best fit to the experimental data, with an R2 value of 0.97. In conclusion, plasma treatment can be a promising alternative for improving the physical and chemical characteristics of SB adsorbents, thereby improving their efficiency in removing mercury from aqueous solutions.
Collapse
Affiliation(s)
| | | | | | - Cláudia Hitomi Watanabe
- Institute of Science and Technology, São Paulo State University (Unesp), Sorocaba, SP, Brazil
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (Unesp), Sorocaba, SP, Brazil.
| |
Collapse
|
4
|
Akl MA, Serage AA. Chitosan impregnated sugarcane bagasse biochar for removal of anionic dyes from wastewater. Sci Rep 2024; 14:27097. [PMID: 39511310 PMCID: PMC11543815 DOI: 10.1038/s41598-024-77708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Wastewater treatment is of utmost importance in providing all equitable and safe drinking water. In the present study, a chitosan impregnated sugarcane bagasse biochar SCNC biocomposite has been synthesized for the removal of Congo red (CR) dye from an aqueous solution. The SCNC biocomposite was thoroughly characterized through Brunauer, Emmett and Teller (BET) and N2 adsorption isotherm, point of zero charge (pHPZC), elemental analysis, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA) analysis. Moreover, SCNC biocomposite was further employed to remove CR dye from the aqueous solution in batch mode. The SCNC biocomposite could remove more than 95.0% of CR at an initial concentration of (100mgL- 1), adsorbent dosage (0.05 g), time (200 min), pH ~ 3. The SCNC biocomposite achieved maximum adsorption capacity of 170mgg- 1. The equilibrium adsorption data for CR dye were best fitted to the Langmuir isotherm model with R2, 0.999. The kinetic and isotherm were statistically investigated using the chi-square statistic (χ2 ), mean square error (MSE), and the sum of squares error (SSE) Because of the higher correlation coefficient (R2 ≥ 0.999) and lower error functions, the equilibrium CR adsorption isotherms for a single-dye system fit Langmuir and the PSO kinetic model. The thermodynamic studies revealed the spontaneous and endothermic nature of adsorption of CR dye onto SCNC biocomposite. The SCNC biocomposite can be regenerated up to the 5th cycle successfully. The mechanism of CR adsorption onto SCNC was elucidated.
Collapse
Affiliation(s)
- Magda A Akl
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Asmaa A Serage
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Liao L, Chen H, He C, Dodbiba G, Fujita T. Boron Removal in Aqueous Solutions Using Adsorption with Sugarcane Bagasse Biochar and Ammonia Nanobubbles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4895. [PMID: 39410467 PMCID: PMC11477493 DOI: 10.3390/ma17194895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Boron is a naturally occurring trace chemical element. High concentrations of boron in nature can adversely affect biological systems and cause severe pollution to the ecological environment. We examined a method to effectively remove boron ions from water systems using sugarcane bagasse biochar from agricultural waste with NH3 nanobubbles (10% NH3 and 90% N2). We studied the effects of the boron solution concentration, pH, and adsorption time on the adsorption of boron by the modified biochar. At the same time, the possibility of using magnesium chloride and NH3 nanobubbles to enhance the adsorption capacity of the biochar was explored. The carbonization temperature of sugarcane bagasse was investigated using thermogravimetric analysis. It was characterized using XRD, SEM, and BET analysis. The boron adsorption results showed that, under alkaline conditions above pH 9, the adsorption capacity of the positively charged modified biochar was improved under the double-layer effect of magnesium ions and NH3 nanobubbles, because the boron existed in the form of negatively charged borate B(OH)4- anion groups. Moreover, cations on the NH3 nanobubble could adsorb the boron. When the NH3 nanobubbles with boron and the modified biochar with boron could coagulate each other, the boron was removed to a significant extent. Extended DLVO theory was adopted to model the interaction between the NH3 nanobubble and modified biochar. The boron adsorption capacity was 36 mg/g at room temperature according to a Langmuir adsorption isotherm. The adsorbed boron was investigated using FT-IR and XPS analysis. The ammonia could be removed using zeolite molecular sieves and heating. Boron in an aqueous solution can be removed via adsorption with modified biochar with NH3 nanobubbles and MgCl2 addition.
Collapse
Affiliation(s)
- Lianying Liao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
| | - Hao Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Bunkyo 113-8656, Japan
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
| |
Collapse
|
6
|
Mishra S, Chauhan MS, Sundaramurthy S. Assessing groundwater quality dynamics in Madhya Pradesh: Chemical contaminants and their temporal patterns. ENVIRONMENTAL RESEARCH 2024; 252:118887. [PMID: 38588910 DOI: 10.1016/j.envres.2024.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Groundwater is essential for maintaining ecosystem health and overall well-being as a pivotal resource for plants and animals. The increasing public consciousness of the deterioration of groundwater quality has emphasized the significance of undertaking extended evaluations of groundwater water quality, particularly in regions undergoing substantial hydrological alterations. This study primarily aims to investigate the spatio-temporal variations in groundwater quality and evaluate its suitability for potable purposes in the region of Madhya Pradesh. The study combines the Mann-Kendall (MK) test and Sen's Slope (SS) to analyze the changes in groundwater quality of all 51 districts of Madhya Pradesh, India, utilizing 12 water quality indices using MATLAB. Data was sourced from the Central Ground Water Board (CGWB) in India from the year 2001-2021. The data was then tested for homogeneity at all 1154 sampling stations using the software XLSTAT. Piper plot clustering characterized the state's groundwater as bicarbonate-calcium-magnesium (HCO3--Ca2+-Mg2+) type. The study found that the groundwater in the area is heavily impacted by high levels of nitrate and hardness, which is caused by an increase in multivalent cations. The water was classified as ranging from hard to extremely hard, and approximately 25.49% of the state's groundwater has nitrate levels that exceed the acceptable limits. The MK test showed a significant increasing correlation in trends for parameters such as nitrate, sulfate, fluoride, chloride, bicarbonate, total hardness, and electrical conductivity. It also showed a significant decreasing correlation for calcium, magnesium, potassium, and sodium. These results were observed at a confidence level of 95%. The analysis of trends has shown that human-related factors have a considerable effect on the characteristics of groundwater quality. It is therefore recommended that such human-related factors be taken into consideration when developing policies for managing groundwater resources. Consequently, these policies should emphasize the strict enforcement of rules and standards that limit the overuse of fertilizers, ensure the appropriate disposal of municipal solid and liquid wastes, and regulate industrial pollutants.
Collapse
Affiliation(s)
- Satyam Mishra
- Department of Civil Engineering, Maulana Azad National Institute of Technology, 462 003, Bhopal, Madhya Pradesh, India.
| | - Mrityunjay Singh Chauhan
- Department of Civil Engineering, Maulana Azad National Institute of Technology, 462 003, Bhopal, Madhya Pradesh, India.
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, 462 003, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
7
|
Mendoza-Cano O, Lugo-Radillo A, Ríos-Silva M, Gonzalez-Curiel IE, Bricio-Barrios JA, Camacho-delaCruz AA, Romo-García MF, Cuevas-Arellano HB, Quintanilla-Montoya AL, Solano-Barajas R, Uribe-Ramos JM, García-Solórzano LA, Hilerio-López ÁG, Solano-Mendoza AA, Danis-Romero R, Murillo-Zamora E. Exploring Heavy Metal and Metalloid Exposure in Children: A Pilot Biomonitoring Study near a Sugarcane Mill. TOXICS 2024; 12:426. [PMID: 38922106 PMCID: PMC11209603 DOI: 10.3390/toxics12060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Sugarcane production has been linked to the release of heavy metals and metalloids (HM/MTs) into the environment, raising concerns about potential health risks. This study aimed to assess the levels of 19 HM/MTs in children living near a sugarcane mill through a pilot biomonitoring investigation. We investigated sex-related differences in these element levels and their correlations. A cross-sectional study was conducted, analyzing data from 20 children in the latter part of 2023. Spearman correlation coefficients with 95% confidence intervals (CIs) were used to assess the relationships between urinary HM/MT levels. Detectable levels of 17 out of the 19 HM/MTs were found across the entire study sample, with arsenic and copper detectable in 95% of the children. Titanium exhibited higher levels in boys compared to girls (p = 0.017). We identified 56 statistically significant correlations, with 51 of them being positive, while the remaining coefficients indicated negative relationships. This study characterized HM/MT levels in school-aged children residing near a sugarcane mill through a pilot biomonitoring investigation. Further research employing larger sample sizes and longitudinal assessments would enhance our understanding of the dynamics and health impacts of HM/MT exposure in this vulnerable population.
Collapse
Affiliation(s)
- Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, Coquimatlán 28400, Mexico
| | - Agustin Lugo-Radillo
- CONAHCyT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda Aguilera S/N, Carr. a San Felipe del Agua, Oaxaca 68020, Mexico
| | - Mónica Ríos-Silva
- Facultad de Medicina, Universidad de Colima, Av. Universidad 333, Col. Las Víboras, Colima 28040, Mexico
| | - Irma Elizabeth Gonzalez-Curiel
- Laboratorio de Inmunotoxicología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara km 6, Col. Ejido La Escondida, Zacatecas 98160, Mexico
| | | | - Arlette A. Camacho-delaCruz
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, Coquimatlán 28400, Mexico
| | - María Fernanda Romo-García
- Laboratorio de Inmunotoxicología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara km 6, Col. Ejido La Escondida, Zacatecas 98160, Mexico
| | | | - Ana Luz Quintanilla-Montoya
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, Coquimatlán 28400, Mexico
| | - Ramón Solano-Barajas
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, Coquimatlán 28400, Mexico
| | - Juan Manuel Uribe-Ramos
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, Coquimatlán 28400, Mexico
| | - Luis A. García-Solórzano
- Tecnológico Nacional de México, Campus Colima, Av. Tecnológico No. 1, Villa de Álvarez 28976, Mexico
| | | | - Alma Alejandra Solano-Mendoza
- Departamento de Medicina Interna, Hospital Civil de Guadalajara “Juan I. Menchaca”, Universidad de Guadalajara, Salvador Quevedo y Zubieta 750, Col. Independencia Oriente, Guadalajara 44340, Mexico
| | - Rogelio Danis-Romero
- Departamento de Pediatría, Hospital General Regional No. 1, Instituto Mexicano del Seguro Social, Av. 5 de Febrero 102, Col. Centro, Santiago de Querétaro 76000, Mexico
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Av. Lapislázuli 250, Col. El Haya, Villa de Álvarez 28984, Mexico
| |
Collapse
|
8
|
Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, Ge S. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122830. [PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
Collapse
Affiliation(s)
- Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, India
| | - Haoran Ye
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
9
|
Liu Q, Cao X, Yue T, Zhang F, Bai S, Liu L. Removal of tetracycline in aqueous solution by iron-loaded biochar derived from polymeric ferric sulfate and bagasse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87185-87198. [PMID: 37418186 DOI: 10.1007/s11356-023-28685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
In this study, the tetracycline (TC) removal performance of iron-loaded biochar (BPFSB) derived from sugarcane bagasse and polymerized iron sulfate was investigated, and the mechanism of TC removal was also explored by study of isotherms, kinetics and thermodynamics and characterization of fresh and used BPFSB (XRD, FTIR, SEM and XPS). The results showed that under optimized conditions (initial pH 2; BPFSB dosage 0.8 g·L-1; TC initial concentration 100 mg·L-1; Contact time 24 h; temperature 298 K), the removal efficiency of TC was as high as 99.03%. The isothermal removal of TC followed well the Langmuir, Freundlich, and Temkin models, indicating that multilayer surface chemisorption dominated the TC removal. The maximum removal capacity of TC by BPFSB at different temperatures was 185.5 mg·g-1 (298 K), 192.7 mg·g-1 (308 K), and 230.9 mg·g-1 (318 K), respectively. The pseudo-second-kinetic model described the TC removal better, while its rate-controlling step was a combination of liquid film diffusion, intraparticle diffusion, and chemical reaction. Meanwhile, TC removal was also a spontaneous and endothermic process, during which the randomness and disorder between the solid-liquid interface was increased. According to the characterization of BPFSBs before and after TC removal, H-bonding and complexation were the major interactions for TC surface adsorption. Furthermore, BPFSB was efficiently regenerated by NaOH. In summary, BPFSB had the potential for practical application in TC removal.
Collapse
Affiliation(s)
- Qiaojing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Cao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Tiantian Yue
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Fengzhi Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
10
|
Li F, Xie Z, Wen J, Tang T, Jiang L, Hu G, Li M. Synthesis of Cellulose-Poly(Acrylic Acid) Using Sugarcane Bagasse Extracted Cellulose Fibres for the Removal of Heavy Metal Ions. Int J Mol Sci 2023; 24:ijms24108922. [PMID: 37240268 DOI: 10.3390/ijms24108922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, sugarcane bagasse (SCB) was treated with sodium hydroxide and bleached to separate the non-cellulose components to obtain cellulose (CE) fibres. Cross-linked cellulose-poly(sodium acrylic acid) hydrogel (CE-PAANa) was successfully synthesised via simple free-radical graft-polymerisation to remove heavy metal ions. The structure and morphology of the hydrogel display an open interconnected porous structure on the surface of the hydrogel. Various factors influencing batch adsorption capacity, including pH, contact time, and solution concentration, were investigated. The results showed that the adsorption kinetics were in good agreement with the pseudo-second-order kinetic model and that the adsorption isotherms followed the Langmuir model. The maximum adsorption capacities calculated by the Langmuir model are 106.3, 333.3, and 163.9 mg/g for Cu(II), Pb(II), and Cd(II), respectively. Furthermore, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometry (EDS) results demonstrated that cationic exchange and electrostatic interaction were the main heavy metal ions adsorption mechanisms. These results demonstrate that CE-PAANa graft copolymer sorbents from cellulose-rich SCB can potentially be used for the removal of heavy metal ions.
Collapse
Affiliation(s)
- Fuchao Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Zhemin Xie
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianfeng Wen
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Tao Tang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Li Jiang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guanghui Hu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|