1
|
Zhao XN, Huang ZS, Chen J, Liu YL, He HY, Cui C, Ma J, Wang L. Differential Impacts of Pyrophosphate on Ferrates(VI, V, and IV): Through Its Unique Inhibition to Identify Fe(V) Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7768-7778. [PMID: 40209084 DOI: 10.1021/acs.est.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
High-valent iron species [Fe(V) and Fe(IV)] exhibit remarkable oxidative activity in environmental chemistry. However, the distinctions between the properties of Fe(V) and Fe(IV) remain poorly understood due to the challenges of distinguishing them. Herein, using pyrophosphate as a model ligand, we comprehensively investigated the influence of oxo-ligands on the reactivity of high-valent iron(VI, V, IV) species. An innovative strategy to selectively generate Fe(IV) using the Fe(VI)-initiated system was proposed, enabling an in-depth investigation of the interaction between Fe(IV) and pyrophosphate. The results reveal that pyrophosphate strongly inhibits Fe(V) oxidation, while it has minimal impact on the reactivity of Fe(VI) and Fe(IV). Based on ligand field theory, pyrophosphate complexation can induce iron 3d orbital resplitting, leading to spin electron rearrangement. Specifically, the hexa-coordinated Fe(V)-oxo complex ligated by pyrophosphate exhibits higher orbital energy, reducing its stability and effective collisions with contaminants, whereas, the potential Jahn-Teller distortion of the Fe(IV)-oxo complex could enhance its stability and preserve its significant reactivity. Given its selective inhibition of Fe(V) oxidation, pyrophosphate can emerge as a promising targeted quenching agent for Fe(V) species. This study provides valuable theoretical insights to guide the identification and characterization of intermediate iron species in iron-based oxidation processes.
Collapse
Affiliation(s)
- Xiao-Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuang-Song Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Chen
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hai-Yang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongwei Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Xue N, Guo Z, Gai X, Chen Y, He S, Lin G, Liu F, Zhang S, Qiu P. Insight on the optimized electronic structure of carbon nitride on ultrafast water treatment via photocatalytic activation of ferrate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137029. [PMID: 39742859 DOI: 10.1016/j.jhazmat.2024.137029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Ferrate (Fe(VI)) is a widely used water purifier and is easily affected by external factors. Given that the actual water environment conditions are complicated, this study designed an oxygen-doped carbon nitride (CNO) with rich electron sites to explore whether direct electron transfer promotes the degradation efficiency of Fe(VI) for pollutants under visible light. For comparison, we also prepared phosphorus-doped carbon nitride (CNP), which has electron-deficient sites and indirect electron transfer. In the CNO/Fe(VI)/light system, not only more high-valent iron and reactive oxygen species were generated, but also the pollutant degradation rate, reaction kinetics, and electron yield were significantly better than those of the CNP and CN systems, verifying the superiority of direct electron transfer. In addition, CNO showed excellent performance in both actual solar photocatalysis and continuous flow experiments. Therefore, the photocatalysis/direct electron transfer mechanism proposed provides an innovative strategy for improving the application potential of Fe(VI) in the field of pollution control and its industrialization application.
Collapse
Affiliation(s)
- Ningxuan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaobing Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Suqian University, Suqian 223800, China.
| | - Xinyu Gai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiyang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Siyue He
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guanjie Lin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fengling Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
3
|
Xie Q, Qin J, Gao T, Li F, Zhong N, Pan B. Engineering ZnIn 2S 4 Nanosheets with Zinc Vacancies: Unleashing Enhanced Photocatalytic Degradation of Tetracycline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25327-25333. [PMID: 39546815 DOI: 10.1021/acs.langmuir.4c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Defect engineering is a highly effective strategy for accelerating charge transfer and enhancing the performance of photocatalysts. In this study, ZnIn2S4 nanosheets were designed and prepared with controlled Zn vacancies to optimize the electronic band structure and localized charge density of ZnIn2S4. EPR results confirmed the formation of Zn vacancies. This modification enabled efficient capture of photoexcited charges in defect centers, thereby prolonging the carrier's lifetime. Theoretical calculations demonstrated that these vacancies induced the formation of new defect states and highly efficient surface reaction sites. As anticipated, under visible light irradiation, the photocatalytic tetracycline removal rate of the ZnIn2S4 nanosheets with Zn vacancies reached 82.8% within 60 min, significantly higher than that observed for the pristine ZnIn2S4 sample. These findings offer valuable insights into the deliberate construction of metal-vacancy-containing photocatalytic nanomaterials for the enhanced degradation of micropollutants.
Collapse
Affiliation(s)
- Quanhua Xie
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instruments, Chongqing Engineering Research Center of Intelligent Optical Fiber Sensing Technology, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Ting Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Fei Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Nianbing Zhong
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instruments, Chongqing Engineering Research Center of Intelligent Optical Fiber Sensing Technology, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
4
|
Xia J, Mark G, Tong Y, Hu T, Volokh M, Han F, Chen H, Shalom M. Enhancing the Activity of a Carbon Nitride Photocatalyst by Constructing a Triazine-Heptazine Homojunction. Inorg Chem 2024; 63:10050-10056. [PMID: 38745389 DOI: 10.1021/acs.inorgchem.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Establishing homojunctions at the molecular level between different but physicochemically similar phases belonging to the same family of materials is an effective approach to promoting the photocatalytic activity of polymeric carbon nitride (CN) materials. Here, we prepared a CN material with a uniform distribution of homojunctions by combining two synthetic strategies: supramolecular assemblies as the precursor and molten salt as the medium. We designed porous CN rods with triazine-heptazine homojunctions (THCNs) using a melem supramolecular aggregate (Me) and melamine as the precursors and a KCl/LiBr salt mixture as the liquid reaction medium. The triazine/heptazine ratio is controlled by varying the relative amounts of the chosen precursors, and the molten salt treatment enhances the structural order of the interplanar packing units for the THCN skeleton, leading to rapid charge migration. The resulting built-in electric field induced by the triazine-heptazine homojunction enhances photogenerated charge separation; the optimal THCN catalyst exhibits an excellent H2 evolution rate via photocatalytic water splitting, which is ∼24 times as high as that of reference bulk CN, with long-term stability.
Collapse
Affiliation(s)
- Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gabriel Mark
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yuxuan Tong
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Ting Hu
- Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Fengyan Han
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
5
|
Pan B, Lv Y, Dong Y, Qin J, Wang C. Hydrochar-Supported NiFe 2O 4Nanosheets with a Tailored Microstructure for Enhanced CO 2Photoreduction to Syngas. Inorg Chem 2024; 63:2148-2156. [PMID: 38217879 DOI: 10.1021/acs.inorgchem.3c04074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Constructing high-efficiency composite photocatalysts with enhanced charge transfer and a rapid surface catalytic reaction has recently received significant attention. Herein, a hydrochar-mediated NiFe2O4 nanosheet (C/NFO) composite was rationally constructed by a simple hydrothermal method. Intimate interface contacts and chemical interactions between hydrochar and NFO were formed. The prepared C/NFO samples exhibited remarkable visible-light-driven catalytic CO2 reduction properties under mild reaction conditions with Ru(bpy)32+ sensitization. As the optimized sample, 16%-C/NFO achieved a 4-fold enhancement of CO production (17.49 μmol/h) compared with that of pure NFO. The C/NFO samples demonstrated good activity and structural stability in the CO2 photoreduction system. The carbon source of CO derived from CO2 was verified through isotopic labeling experiments using 13CO2. In situ photoluminescence and electrochemical characterizations confirmed the role of electron transfer intermediates of C/NFO. The synergistic effect of the nanosheet-like structure of NFO, combined with the surface functional groups of hydrochar, facilitated an exceptionally high rate of charge transfer and exposed abundant active adsorption sites for CO2, thereby promoting the efficient separation of photogenerated charge carriers and enhancing photocatalytic activity for CO2 reduction. This study presents a promising strategy for the rational design of hydrochar coupled with transition metal compound catalysts for efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Yuzhu Lv
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Yanli Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
6
|
Pan B, Liao M, Zhao Y, Lv Y, Qin J, Sharma VK, Wang C. Visible light activation of ferrate(VI) by oxygen doped ZnIn 2S 4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132413. [PMID: 37666167 DOI: 10.1016/j.jhazmat.2023.132413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The increasing consumption of antibiotics and their subsequent release to wastewater or groundwater and ultimately to the water supply (or drinking water) has great concerns. This paper presents a visible light (VL) activated ferrate(VI) (FeVIO42-, Fe(VI)) system to degrade the selected antibiotic, trimethoprim (TMP), efficiently. An oxygen doped ZnIn2S4 nanosheet (O-ZIS) coupled with a black phosphorus (BP) heterostructure (O-ZIS/BP), is fabricated by a simple electrostatic self-assembly method. The O-ZIS/BP photocatalyst is comprehensively characterized by surface and analytical techniques, which show superior separation efficiency of the photoinduced charge carriers in the heterostructure. A VL-O-ZIS/BP-Fe(VI) system achieves more than 80% removal in 1.0 min and complete removal of TMP in 3.0 min. Comparatively, only ⁓7% and ⁓24% of TMP are degraded by O-ZIS/BP and Fe(VI) in 1.0 min, respectively. The degradation experiments using probe molecules of reactive species and electron paramagnetic resonance (EPR) measurements reveal involvement of superoxide (O2-•), hydroxyl radical (•OH), and iron(V)/iron (IV) (FeV/FeIV) species in the mechanism of TMP degradation. Oxidized products of TMP are identified and reaction pathways are given. Theoretical calculations predict the initial attack on the TMP molecule by the reactive species in the VL-O-ZIS/BP-Fe(VI) system. The activation of Fe(VI) by VL-heterostructure photocatalysts accelerates the degradation of antibiotics, demonstrating its potential for water depollution.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Miao Liao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yanli Zhao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuzhu Lv
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX 77843, USA.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
7
|
Zhao J, Zhang H, Shi Y, Luo M, Zhou H, Xie Z, Du Y, Zhou P, He C, Yao G, Lai B. Efficient activation of ferrate by Ru(III): Insights into the major reactive species and the multiple roles of Ru(III). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131927. [PMID: 37379593 DOI: 10.1016/j.jhazmat.2023.131927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Ferrate (Fe(VI)) has aroused great research interest in recent years due to its environmental benignancy and lower potential in disinfection by-product generation. However, the inevitable self-decomposition and lower reactivity under alkaline conditions severely restrict the utilization and decontamination efficiency of Fe(VI). Here, we discovered that Ru(III), a representative transition metal, could effectively activate Fe(VI) to degrade organic micropollutants, and its performance on Fe(VI) activation exceeded that of previously reported metal activators. The high-valent metal species (i.e., Fe(IV)/Fe(V) and high-valent Ru species) made a major contribution to SMX removal by Fe(VI)-Ru(III). Density functional theory calculations indicated the function of Ru(III) as a two-electron reductant, leading to the production of Ru(V) and Fe(IV) as the predominant active species. The characterization analyses proved that Ru species was deposited on ferric (hydr)oxides as Ru(III), indicating the possibility of Ru(III) as an electron shuttle with the rapid valence circulation between Ru(V) and Ru(III). This study not only develops an efficient way to activate Fe(VI) but also offers a thorough understanding of Fe(VI) activation induced by transition metals.
Collapse
Affiliation(s)
- Jia Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhenjun Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|