1
|
Li Z, Feng Q, Lu M, Qin F, Liu Z, Guo R. Enhancement of livestock wastewater treatment by a novel wooden-modified biocarrier. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125131. [PMID: 39419466 DOI: 10.1016/j.envpol.2024.125131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Intensive livestock wastewater poses threat to ecosystem. A novel wooden-modified biocarrier was applied in this study to enhance the livestock wastewater treatment in anoxic-aerobic systems. Compared to the ordinary polyethylene (PE) biocarrier, the novel wooden-modified biocarrier improved the biomass owing to its rough surface and porous side wall, and had better nitrogen removal ability. The biomass of wooden-modified biocarrier was 6.3 ± 1.1 and 36.4 ± 17.0 times that of PE biocarrier in anoxic and aerobic condition, respectively. The removal rates of ammonia nitrogen and total nitrogen of this novel biocarrier on specific biofilm's aera eventually stabilized at 0.64 ± 0.10 and 0.94 ± 0.21 g N/m2/d, respectively. Notably, this wooden-modified biocarrier was conducive to increase nitrogen removal by simultaneous nitrification and denitrification to some extent. The biofilm on novel modified biocarrier had higher extracellular polymeric substances (EPS) contents than activated sludge (AS), and the proportions of polysaccharides (PS) in EPS from biocarrier were more than those from AS. Compared to PE biocarrier and AS, the wooden-modified biocarriers enhanced the enrichment of nitrifying and denitrifying bacteria, and promoted the membrane transport and aerobic nitrogen metabolism. This study confirmed the superiority of wooden-modified biocarrier and provided reference for the treatment of high concentration sewage in full-scale project.
Collapse
Affiliation(s)
- Zhiwei Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | | | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| |
Collapse
|
2
|
Li Z, Feng Q, Lu M, Zhang F, Guo R. Effects of a novel sawdust-modified carrier on performance, bioaccumulation and microbial community of sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122349. [PMID: 39243650 DOI: 10.1016/j.jenvman.2024.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The impact of a novel sawdust-modified carrier on the performance of aerobic sequencing batch reactor (SBR) was examined. Compared with the conventional polyethylene (PE) carrier, the sawdust-modified carrier had coarse surface and porous side wall, which was beneficial for the rapid formation of biofilm. The biomass of sawdust-modified carrier was 3.4 ± 0.7 times more than those of PE carrier at the end of this study. The biofilm gotten from suspended carrier had higher extracellular polymeric substances (EPS) concentrations than activated sludge (AS). The EPS from biofilm contained higher proportions of polysaccharides compared to those from AS. The SBR with addition of sawdust-modified carrier exhibited higher ammonia nitrogen removal efficiency (84.8%) than the one with addition of conventional PE carrier (73.1%) in a typical cycle at 12 h. The volumetric nitrification rates of modified carrier were higher than those of conventional PE carrier. High throughput sequencing revealed that sawdust-modified carriers exhibited greater microbial richness and diversity compared with traditional PE carriers. Saccharimonadales was the most predominant genus that removed organic matter under aerobic condition, whereas Nitrospira was the dominant nitrifying genus. The present study verifies the advantage of sawdust-modified carrier, which has the potential for the full-scale application in the future.
Collapse
Affiliation(s)
- Zhiwei Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| |
Collapse
|
3
|
Lan Z, Zhang Y, Liang R, Wang Z, Sun J, Lu X, He Y, Wang Y. Comprehensive comparison of integrated fixed-film activated sludge (IFAS) and AAO activated sludge methods: Influence of different operational parameters. CHEMOSPHERE 2024; 357:142068. [PMID: 38636921 DOI: 10.1016/j.chemosphere.2024.142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems. The study showed that, at an HRT of 12 h, the IFAS system exhibited an average increase of 5.76%, 8.85%, and 12.79% in COD, NH4+-N, and TN removal efficiency respectively, compared to the AAO system at an HRT of 16 h. The TP concentration in the IFAS system reached 0.82 mg/L without the use of additives. The IFAS system demonstrated superior effluent results under lower operating conditions of HRT, nitrification solution recycle ratio, and DO. The 16S rDNA analysis revealed higher abundance of denitrification-related associated flora, including Proteobacteria, Bacteroidetes, and Planctomycetota, in the IFAS system compared to the AAO system. Similarities were observed between microorganisms attached to the media and activated sludge in the anaerobic, anoxic, and oxic tanks. q-PCR analysis indicated that the incorporation of filler material in the IFAS system resulted in similar abundance of nitrifying bacteria genes on the biofilm as in the oxic tank. Additionally, denitrifying genes showed higher levels due to aeration scouring and the presence of alternating aerobic-anaerobic environments on the biofilm surface, enhancing nitrogen removal efficiency.
Collapse
Affiliation(s)
- Zihua Lan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Renli Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Zhiqiang Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Bai M, Zhao W, Wang Y, Bi X, Su S, Qiu H, Gao Z. Towards low carbon demand and highly efficient nutrient removal: Establishing denitrifying phosphorus removal in anaerobic/anoxic/oxic + nitrification system. BIORESOURCE TECHNOLOGY 2024; 395:130385. [PMID: 38281549 DOI: 10.1016/j.biortech.2024.130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
A two-sludge anaerobic/anoxic/oxic + nitrification system with simultaneous nitrogen and phosphorus removal was studied for enhanced low-strength wastewater treatment. After 158 days of operation, excellent NH4+-N, chemical oxygen demand (COD) and PO43--P removal (99.0 %, 90.0 % and 92.0 %, respectively) were attained under a low carbon/nitrogen ratio of 5, resulting in effluent NH4+-N, COD and PO43--P concentrations of 0.3, 30.0 and 0.5 mg/L, respectively. The results demonstrate that the anaerobic/anoxic/oxic sequencing batch reactor (A2-SBR) and nitrification sequencing batch reactor (N-SBR) had favorable denitrifying phosphorus removal and nitrification performance, respectively. High-throughput sequencing results indicate that the phosphate-accumulating organisms Dechloromonas (1.1 %) and Tetrasphaera (1.2 %) were enriched in the A2-SBR, while the ammonia-oxidizing bacteria Nitrosomonas (7.8 %) and the nitrite-oxidizing bacteria Nitrospira (18.1 %) showed excellent accumulation in the N-SBR. Further analysis via functional prediction revealed that denitrification is the primary pathway of nitrogen metabolism throughout the system. Overall, the system achieved low carbon and high efficiency nutrient removal.
Collapse
Affiliation(s)
- Meng Bai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Weihua Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China.
| | - Yanyan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Shaoqing Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Haojie Qiu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Zhongxiu Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| |
Collapse
|
5
|
Wu NP, Zhang Q, Tan B, Li M, Lin B, He J, Su JH, Shen HN. Integrated fixed-film activated sludge systems in continuous-flow and batch mode acclimated from low to high aniline concentrations: Performance, mechanism and metabolic pathways. BIORESOURCE TECHNOLOGY 2023; 379:129043. [PMID: 37044153 DOI: 10.1016/j.biortech.2023.129043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) system has considerable advantages in treating aniline wastewater economically and efficiently. However, the response mechanism of IFAS to aniline needs further study. Herein, IFAS in continuous-flow (CF-IFAS) and batch mode (B-IFAS) were set up to investigate it. The removal efficiency of aniline exceeded 99% under different stress intensities. At low stress intensity (aniline ≈ 200 mg/L), the total nitrogen removal efficiency of B-IFAS was approximately 37.76% higher than CF-IFAS. When the stress intensity increased (aniline ≥ 400 mg/L), both were over 82%. CF-IFAS was restrained by denitrification while nitrification in B-IFAS. The legacy effect of perturbation of B-IFAS made microflora quickly reach new stability. The closer interspecific relationship in B-IFAS and more key species: Leucobacter, Rhodococcus, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Ellin6067 and norank_f_NS9_marine_group. Metabolic and Cell growth and death were the most abundant metabolic pathways, resulting both systems the excellent pollutant removal and stability under high stress intensity.
Collapse
Affiliation(s)
- Nan-Ping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jun-Hao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hao-Nan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
6
|
Maza-Márquez P, Gallardo-Altamirano MJ, Osorio F, Pozo C, Rodelas B. Microbial indicators of efficient performance in an anaerobic/anoxic/aerobic integrated fixed-film activated sludge (A2O-IFAS) and a two-stage mesophilic anaerobic digestion process. CHEMOSPHERE 2023; 335:139164. [PMID: 37295687 DOI: 10.1016/j.chemosphere.2023.139164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
An analysis of the community structure, diversity and population dynamics of Bacteria and Archaea in the suspended and attached biomass fractions of a pilot-scale anaerobic/anoxic/aerobic integrated fixed-film activated sludge (A2O-IFAS) was executed. Along with this, the effluents of the acidogenic (AcD) and methanogenic (MD) digesters of a two-stage mesophilic anaerobic (MAD) system treating the primary sludge (PS) and waste activated sludge (WAS) generated by the A2O-IFAS were also analyzed. Non-metric multidimensional scaling (MDS) and Biota-environment (BIO-ENV) multivariate analyses were performed to link population dynamics of Bacteria and Archaea to operating parameters and removal efficiencies of organic matter and nutrients, in search of microbial indicators associated with optimal performance. In all samples analyzed, Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla, while the hydrogenotrophic methanogens Methanolinea, Methanocorpusculum and Methanobacterium were the predominant archaeal genera. BIO-ENV analysis disclosed strong correlations between the population shifts observed in the suspended and attached bacterial communities of the A2O-IFAS and the removal rates of organic matter, N and P. It is noteworthy that the incorporation of carriers combined with a short sludge retention time (SRT = 4.0 ± 1.0 days) enhanced N removal performance of the A2O by favoring the enrichment of bacterial genera able to denitrify (Bosea, Dechloromonas, Devosia, Hyphomicrobium, Rhodobacter, Rhodoplanes, Rubrivivax, and Sulfuritalea) in the attached biomass fraction. In addition, operation at short SRT enabled the generation of a highly biodegradable WAS, which enhanced the biogas and methane yields in the two-stage MAD. An increase in the relative abundance of Acetobacteroides (uncultured Blvii28 wastewater-sludge group of Rikenellaceae family) correlated positively with the volatile solids removal rate (%VSR), CH4 recovery rate and %CH4 in the biogas (r > 0.8), supporting their relevance for an efficient methanogenesis in two-stage systems.
Collapse
Affiliation(s)
- P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071, Granada, Spain
| | - M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Civil Engineering, University of Granada, 18071, Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071, Granada, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071, Granada, Spain
| |
Collapse
|
7
|
Zhou Y, Li X, Chen J, Wang F. Treatment of antibiotic-containing wastewater with self-suspended algae-bacteria symbiotic particles: Removal performance and reciprocal mechanism. CHEMOSPHERE 2023; 323:138240. [PMID: 36841454 DOI: 10.1016/j.chemosphere.2023.138240] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants such as antibiotics in wastewater have posed a challenge on conventional biological treatment processes. Algae-bacteria symbiotic mode could improve the performance of biological treatment processes. Self-suspended algae-bacteria symbiotic particles (ABSPs) were prepared with Chlorella vulgaris and Bacillus subtilis using the sol-gel method and hollow glass microspheres in this study. The removal effect of nitrogen and phosphorus as well as the feedback mechanism of ABSPs under tetracycline stress were investigated through three-cycles wastewater treatment experiments. The antioxidant enzyme activity and phycosphere extracellular polymeric substance (EPS) content were identified as well. The results indicated that the removal rates of NH4+-N, TP, COD, and tetracycline in the ABSPs group finally reached 96.18%, 95.44%, 81.36%, and 74.20%, respectively, which were higher than the single algae group apparently. The phycosphere EPS content increased by 20.41% and algae cell structure maintained integrity in ABSPs group as compared with that in single algae group. This study demonstrates that the self-suspended ABSPs can improve contaminants removal performance and alleviate the antioxidant stress response of algae through algal-bacterial reciprocity mechanism.
Collapse
Affiliation(s)
- Yuhang Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinjie Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaqi Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
8
|
Zhao W, Bi X, Bai M, Wang Y. Research advances of ammonia oxidation microorganisms in wastewater: metabolic characteristics, microbial community, influencing factors and process applications. Bioprocess Biosyst Eng 2023; 46:621-633. [PMID: 36988685 DOI: 10.1007/s00449-023-02866-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Ammonia oxidation carried out by ammonia-oxidizing microorganisms (AOMs) is a central step in the global nitrogen cycle. Aerobic AOMs comprise conventional ammonia-oxidizing bacteria (AOB), novel ammonia-oxidizing archaea (AOA), which could exist in complex and extreme conditions, and complete ammonia oxidizers (comammox), which directly oxidize ammonia to nitrate within a single cell. Anaerobic AOMs mainly comprise anaerobic ammonia-oxidizing bacteria (AnAOB), which can transform NH4+-N and NO2--N into N2 under anaerobic conditions. In this review, the unique metabolic characteristics, microbial community of AOMs and the influencing factors are discussed. Process applications of nitrification/denitrification, nitritation/denitrification, nitritation/anammox and partial denitrification/anammox in wastewater treatment systems are emphasized. The future development of nitrogen removal processes using AOMs is expected, enrichment of comammox facilitates the complete nitrification performance, inhibiting the activity of comammox and NOB could achieve stable nitritation, and additionally, AnAOB conducting the anammox process in municipal wastewater is a promising development direction.
Collapse
Affiliation(s)
- Weihua Zhao
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
- Qingdao University of Technology, Huangdao District, Qingdao, 266525, People's Republic of China.
| | - Xuejun Bi
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Meng Bai
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yanyan Wang
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| |
Collapse
|