1
|
O'Neill KEB, Biswakarma J, Crane R, Byrne JM. Recovery of Co(ii), Ni(ii) and Zn(ii) using magnetic nanoparticles (MNPs) at circumneutral pH. ENVIRONMENTAL SCIENCE. NANO 2025; 12:2371-2382. [PMID: 40027589 PMCID: PMC11863564 DOI: 10.1039/d4en01176g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Growing demand for metals, particularly those with irreplaceable utility within renewable energy technology dictates an urgent demand for the development of new innovative approaches for their extraction from primary and secondary sources. In this study, magnetic nanoparticles (MNP) were investigated for their ability to remove cobalt (Co2+), nickel (Ni2+), and zinc (Zn2+) ions from neutral pH aqueous solutions under anoxic conditions. A MNP suspension (1 g L-1 or 5 g L-1) was exposed to varying concentrations of Co(ii), Ni(ii), and Zn(ii) (10-1000 mg L-1) in both single and mixed systems for 48 hours at pH 7.0 ± 0.1. Results show that MNPs can remove these ions to low concentrations (K d values: Zn: 0.07 L g-1; Co: 0.02 L g-1; and Ni: 0.01 L g-1 in single metal systems). Transmission Electron Microscopy (TEM) analysis confirmed relatively homogenous surface coverage of MNPs by each metal, while X-ray Absorption Spectroscopy (XAS) measurements determined sorption via the formation of coordinate bonds between the sorbed metals and surface oxygen atoms (Fe-O). Overall, our results show that MNPs can serve as an effective and reusable sorbent for Zn, Ni and Co ions from circumneutral pH waters.
Collapse
Affiliation(s)
| | | | - Rich Crane
- Camborne School of Mines, University of Exeter Penryn TR10 9EZ UK
| | - James M Byrne
- School of Earth Sciences, University of Bristol Bristol BS8 1TH UK
| |
Collapse
|
2
|
Cardoso CED, Almeida JC, Rocha J, Pereira E. Application of Box-Behnken design to optimize the phosphorus removal from industrial wastewaters using magnetic nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6804-6816. [PMID: 40016607 PMCID: PMC11928393 DOI: 10.1007/s11356-025-36152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Phosphorus is essential for all living organisms and limits aquatic plant growth. Pulp mill effluents, particularly from Eucalyptus bleached kraft pulp mills, contain phosphorus concentrations that vary with operational conditions. This variability poses challenges for effective treatment and phosphorus removal. However, uncontrolled release of phosphorus-rich wastewaters causes eutrophication. This study focuses on optimizing phosphorus removal from such effluents using cobalt ferrite nanoparticles, with an emphasis on process optimization to address this variability. Minimizing phosphorus concentrations is crucial in wastewater engineering and surface water management. By employing design of experiments and response surface methodology, we aim to fine-tune the phosphorous removal process and pinpoint the key factors with the most significant impact. Optimal conditions for achieving over 90% removal from an effluent with 5 mg P/L were identified as a sorbent dose greater than 1.3 g/L and a pH range between 5 and 7, all within a contact time of only 15 min. For a contact time of 1 and 24 h, the conditions adjust to a sorbent dose greater than 0.97 and 0.83 g/L, respectively, with the pH range remaining the same. Our results highlight the effectiveness of cobalt ferrite nanoparticles as sorbents in the removal of phosphorus for water treatment purposes. This approach presents a sustainable and proficient strategy for phosphorus recovery from pulp mill effluents, thereby lessening environmental repercussions and offering a valuable resource for future use. This contributes to the maintenance of water quality and ecosystem preservation.
Collapse
Affiliation(s)
- Celso E D Cardoso
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Joana C Almeida
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - João Rocha
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Li Z, Wei Y, Wu H, Yuan P. Efficient and regenerative phosphate removal from wastewater using stable magnetite/magnesium iron oxide nanocomposites. ENVIRONMENTAL RESEARCH 2025; 264:120268. [PMID: 39481778 DOI: 10.1016/j.envres.2024.120268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Using magnetite-based nanocomposite adsorbents to remove and recycle phosphate from wastewater is crucial for controlling eutrophication and ensuring the sustainable use of phosphorus resources. However, the weak structural stability between magnetite and adsorptive nanoparticles often reduces phosphate removal efficiency in real-world applications. This instability primarily results from the loss of adsorptive nanoparticles from the magnetite surfaces, particularly when metal oxide nanoparticles are used for phosphate removal and recycling. In this study, we present a top-down approach that involves lattice locking magnesium iron oxide nanoparticles to the magnetite core, preventing magnesium loss from the magnetite surfaces. These nanocomposites exhibit exceptional performance in both phosphate recycling and removal, with a maximum adsorption capacity of 101.8 mg P·g-1. Excellent adsorption performance is also observed even in the presence of competing anions at phosphate-to-competing ion molar ratios of 1:5, 1:25, and 1:100, as well as dissolved organic matter, across a broad pH range of 4-10. The adsorbent also demonstrated minimal magnesium release during regeneration and in acidic conditions. Microscopic and spectroscopic analyses reveal that surface precipitation is the primary mechanism of phosphate removal in the magnesium-containing shells. The findings of this study address the current limitations of magnetite nanocomposites in phosphate removal, paving the way for the development of highly stable and sustainable nanocomposites for various chemical removal and recycling applications in wastewater treatment.
Collapse
Affiliation(s)
- Zheng Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, China.
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Liang L, He J, Zhou Q, He L, Tian K, Yang J, He J, Luo Q. Enhanced adsorption of phosphate by rice straw-based biochar prepared via metal impregnation and bio-template technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39177-39193. [PMID: 38814556 DOI: 10.1007/s11356-024-33795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Phosphate removal from water through green, highly efficient technologies has received much attention. Biochar is an effective adsorbent for phosphate removal. However, adsorption capacity of phosphate on pristine rice straw-based biochar was not optimistic due to low anion exchange capacity. In this study, Fe-modified, Mg-modified and MgFe-modified rice straw-based biochar (Fe-BC, Mg-BC and MgFe-BC) were prepared by combining metal impregnation and biological template methods to improve the adsorption capacity of phosphate. The surface characteristics of biochar and the adsorption behavior of phosphate on biochar were investigated. The modified biochar had the specific surface area of 17.910-39.336 m2/g, and their surfaces were rich in a large number of functional groups and metal oxides. Phosphate release was observed on pristine rice straw-based biochar without metal impregnation. The maximum adsorption capacities of phosphate on MgFe-BC, Mg-BC and Fe-BC at 298 K were 6.93, 5.75 and 0.23 mg/g, respectively. Adsorption was a spontaneous endothermic process, while chemical adsorption dominated and electrostatic attraction and pores filling existed simultaneously. Based on the site energy distribution theory study, the standard deviation of MgFe-BC decreased from 6.96 to 4.64 kJ/mol with temperature increasing, which proved that the higher the temperature would cause the lower heterogeneity. Moreover, the effects of pH, humic acid, co-existing ions and ionic strength on phosphate adsorption of MgFe-BC were also discussed. MgFe-BC with fine pores and efficient adsorption sites is an ideal adsorbent for phosphate removal from water.
Collapse
Affiliation(s)
- Li Liang
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Jing He
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| | - Qiuhong Zhou
- Changjiang Engineering Group, Wuhan, 430010, People's Republic of China
| | - Liangyan He
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Kening Tian
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Jing Yang
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Junwei He
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Qiao Luo
- Bureau of Ecology and Environment of Zizhong, Neijiang, 641215, People's Republic of China
| |
Collapse
|
5
|
Li S, Zhang Y, Zhao S, Zhang L, Qiao S, Zhou J. New design to enhance phosphonate selective removal from water by MOF confined in hyper-cross-linked resin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169760. [PMID: 38185179 DOI: 10.1016/j.scitotenv.2023.169760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Although polymeric anion exchange resins can remove phosphonates, they lack selectivity for target phosphonates and are susceptible to interference by anions and other substances. Here, we developed a novel strategy via confining MIL-101(Fe)-NH2 inside commercial resins IRA-900 for high-efficient and precise phosphonate removal, accompanying with the improvement of the stability and recovery of MIL-101(Fe)-NH2. The obtained nanocomposite MIL-101(Fe)-NH2@IRA-900 (MFNI) exhibited significantly enhanced phosphonate removal in the presence of competing anions (Cl-, SO42-, NO3- and CO32-) and natural organic matter (humic acid) at high concentrations (2-4 times of phosphonate concentration). Moreover, MFNI displayed the highest phosphonate adsorption capacity (12.9 mg P/g) and the fastest adsorption kinetics (120 min) than hydrated ferric oxides modified IRA-900 (HFOI) (6.7 mg P/g, 180 min), MIL-101(Fe)-NH2 (7.6 mg P/g, 240 min) and IRA-900 (5.6 mg P/g, 360 min). Such higher adsorption affinity and anti-interference ability came from the synergistic effect of the host IRA-900 (hydrogen-bond interaction and electrostatic attraction) and the embedded MIL-101(Fe)-NH2 (ligand exchange). The depleted MFNI could be regenerated with a binary NaOH-NaCl solution and reused without significant loss of capacity. Column adsorption runs by using MFNI indicated the fresh MFNI could achieve 100 % removal of PPOA in 10.5 h continuously feeding, which offered the possibility of achieving potential large-scale applications. In general, a new MOF-confined design approach was practiced to achieve selective elimination of phosphates and to improve the stability and recovery of MOF.
Collapse
Affiliation(s)
- Shuangli Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Liying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|