1
|
Xu M, Ren M, Yao Y, Liu Q, Che J, Wang X, Xu Q. Biochar decreases cadmium uptake in indica and japonica rice (Oryza sativa L.): Roles of soil properties, iron plaque, cadmium transporter genes and rhizobacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135402. [PMID: 39096632 DOI: 10.1016/j.jhazmat.2024.135402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Biochar is an effective and economical strategy for in situ soil cadmium (Cd) remediation. It is essential to comprehensively investigate how biochar mitigates Cd uptake of the main rice subspecies. A pot experiment was established via adding corn stalk biochar into Cd-contaminated soil growing indica Yangdao 6 (YD) and japonica Nangeng 9108 (9108). 9108 had lower shoot biomass (-17.9%) but higher root biomass (+14.4%) and shoot Cd concentration (+29.4%) than YD. Biochar decreased soil available Cd by 25.2% and shoot Cd concentration by 13.6% through the liming and passivation effects. Biochar also favored Cd mitigation by recruiting Fe reducer, Cd remover and plant growth-promoting rhizobacteria (e.g. Bacteroides, Deferrisomatota, Bacillus and Allorhizobium). Besides, biochar reduced Cd uptake by stimulating iron plaques formation for 9108. Moreover, biochar did not reduce Cd uptake by inhibiting Cd transporter genes' expressions and it increased OsHMA2 expression in YD. In conclusion, biochar had great capacity in mitigating Cd pollution and rice subspecies responded differently to biochar in iron plaque formation and Cd transporter genes. The research established a comprehensive understanding of the mechanisms underlying Cd mitigation by biochar and helped to breed low Cd-accumulated rice cultivars to safeguard rice production.
Collapse
Affiliation(s)
- Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Meiling Ren
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yu Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Liu
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
2
|
Ahmad S, Sehrish AK, Umair M, Mirino MW, Ali S, Guo H. Effect of biochar amendment on bacterial community and their role in nutrient acquisition in spinach (Spinacia oleracea L.) grown under elevated CO 2. CHEMOSPHERE 2024; 364:143098. [PMID: 39151577 DOI: 10.1016/j.chemosphere.2024.143098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Global climate change is anticipated to shift the soil bacterial community structure and plant nutrient utilization. The use of biochar amendment can positively influence soil bacterial community structure, soil properties, and nutrient use efficiency of crops. However, little is known about the underlying mechanism and response of bacterial community structure to biochar amendment, and its role in nutrient enhancement in soil and plants under elevated CO2. Herein, the effect of biochar amendment (0, 0.5, 1.5%) on soil bacterial community structure, spinach growth, physiology, and soil and plant nutrient status were investigated under two CO2 concentrations (400 and 600 μmol mol-1). Findings showed that biochar application 1.5% (B.2.E) significantly increased the abundance of the bacterial community responsible for growth and nutrient uptake i.e. Firmicutes (42.25%) Bacteroidetes (10.46%), and Gemmatimonadetes (125.75%) as compared to respective control (CK.E) but interestingly abundance of proteobacteria decreased (9.18%) under elevated CO2. Furthermore, the soil available N, P, and K showed a significant increase in higher biochar-amended treatments under elevated CO2. Spinach plants exhibited a notable enhancement in growth and photosynthetic pigments when exposed to elevated CO2 levels and biochar, as compared to ambient CO2 conditions. However, there was variability observed in the leaf gas exchange attributes. Elevated CO2 reduced spinach roots and leaves nutrient concentration. In contrast, the biochar amendment (B2.E) enhanced root and shoot Zinc (494.99%-155.33%), magnesium (261.15%-183.37%), manganese (80.04%-152.86%), potassium (576.24%-355.17%), calcium (261.88%-165.65%), copper (325.42%-282.53%) and iron (717.63%-177.90%) concentration by influencing plant physiology and bacterial community. These findings provide insights into the interaction between plant and bacterial community under future agroecosystems in response to the addition of biochar contributing to a deeper understanding of ecological dynamics.
Collapse
Affiliation(s)
- Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Muhammad Umair
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Markus W Mirino
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou, China.
| |
Collapse
|
3
|
Shen C, Li X, Qin J. Kiwifruit-Agaricus blazei intercropping effectively improved yield productivity, nutrient uptake, and rhizospheric bacterial community. Sci Rep 2024; 14:16546. [PMID: 39019951 PMCID: PMC11255323 DOI: 10.1038/s41598-024-66030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
Intercropping systems have garnered attention as a sustainable agricultural approach for efficient land use, increased ecological diversity in farmland, and enhanced crop yields. This study examined the effect of intercropping on the kiwifruit rhizosphere to gain a deeper understanding of the relationships between cover plants and kiwifruit in this sustainable agricultural system. Soil physicochemical properties and bacterial communities were analyzed using the Kiwifruit-Agaricus blazei intercropping System. Moreover, a combined analysis of 16S rRNA gene sequencing and metabolomic sequencing was used to identify differential microbes and metabolites in the rhizosphere. Intercropping led to an increase in soil physicochemical and enzyme activity, as well as re-shaping the bacterial community and increasing microbial diversity. Proteobacteria, Bacteroidota, Myxococcota, and Patescibacteria were the most abundant and diverse phyla in the intercropping system. Expression analysis further revealed that the bacterial genera BIrii41, Acidibacter, and Altererythrobacter were significantly upregulated in the intercropping system. Moreover, 358 differential metabolites (DMs) were identified between the monocropping and intercropping cultivation patterns, with fatty acyls, carboxylic acids and derivatives, and organooxygen compounds being significantly upregulated in the intercropping system. The KEGG metabolic pathways further revealed considerable enrichment of DMs in ABC transporters, histidine metabolism, and pyrimidine metabolism. This study identified a significant correlation between 95 bacterial genera and 79 soil metabolites, and an interactive network was constructed to explore the relationships between these differential microbes and metabolites in the rhizosphere. This study demonstrated that Kiwifruit-Agaricus blazei intercropping can be an effective, labor-saving, economic, and sustainable practice for reshaping bacterial communities and promoting the accumulation and metabolism of beneficial microorganisms in the rhizosphere.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-Economy Research Center, Ankang University, Ankang, 725000, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, 725000, China
| | - Jianfeng Qin
- Ankang Academy of Agricultural Sciences, Ankang, 725000, China
| |
Collapse
|
4
|
Abuelsoud W, Saleh AM, Mohammed AE, Alotaibi MO, AbdElgawad H. Chitosan nanoparticles upregulate C and N metabolism in soybean plants grown under elevated levels of atmospheric carbon dioxide. Int J Biol Macromol 2023; 252:126434. [PMID: 37604417 DOI: 10.1016/j.ijbiomac.2023.126434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Despite the wide utilization of chitosan nanoparticles (CSNPs) as a promising approach for sustainable agriculture, their efficiency under elevated CO2 (eCO2), has not been evaluated. The interactive effects of CSNPs and eCO2 were evaluated on the growth and C and N metabolism of soybean plants. Plants were treated with CSNPs and grown under ambient CO2 (410 ppm, aCO2) or eCO2 (645 ppm). Regardless of CO2 level, CSNPs improved the net photosynthetic rate. CSNPs aggravated the effect of eCO2 treatment on the levels of non-structural carbohydrates (i.e., glucose, fructose, sucrose, and starch), especially in shoots, which was inconsistence with the upregulation of carbohydrates metabolizing enzymes. Being the most pivotal energetic and signaling organic compounds in higher plants, the synergistic action of CSNPs and eCO2 on the accumulation of soluble sugars upregulated the N metabolism as indicated by induced activities of nitrate reductase, arginase, glutamate dehydrogenase, glutamine synthetase, and glutamine oxoglutarate aminotransferase which was manifested finally as increased shoot and root total nitrogen content as well as proline and aspartate in roots. At the hormonal level, the coexistence of eCO2 with CSNPs further supports their positive impact on the contents of IAA and, to a lesser extent, GAs. The present data prove that the biofertilization capacity of CSNPs is even more potent under futuristic eCO2 levels and could even further improve the growth and resilience of plants.
Collapse
Affiliation(s)
- Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Han Q, Fu Y, Qiu R, Ning H, Liu H, Li C, Gao Y. Carbon Amendments Shape the Bacterial Community Structure in Salinized Farmland Soil. Microbiol Spectr 2023; 11:e0101222. [PMID: 36625648 PMCID: PMC9927309 DOI: 10.1128/spectrum.01012-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Practical, effective, and economically feasible salt reclamation and amelioration methods are in great demand in arid and semiarid areas. Energy amendments may be more appropriate than alternatives for improving salinized farmland soil because of their effects on soil microbes. We investigated the effects of biochar (Carbon) addition and desulfurization (noncarbon) on the soil bacterial community associated with Zea mays seedlings. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant soil bacterial phyla. Biochar significantly increased soil bacterial biodiversity but desulfurization did not. The application of both amendments stimulated a soil bacterial community shift, and biochar amendments relieved selection pressure and increased the stochasticity of community assembly of bacterial communities. We concluded that biochar amendment can improve plant salt resistance by increasing the abundance of bacteria associated with photosynthetic processes and alter bacterial species involved in carbon cycle functions to reduce the toxicity of soil salinity to plants. IMPORTANCE Farmland application of soil amendments is a usual method to mitigate soil salinization. Most studies have concluded that soil properties can be improved by soil amendment, which indirectly affects the soil microbial community structures. In this study, we applied carbon and noncarbon soil amendments and analyzed the differences between them on the soil microbial community. We found that carbon soil amendment distinctly altered the soil microbial community. This finding provides key theoretical and technical support for using soil amendments in the future.
Collapse
Affiliation(s)
- Qisheng Han
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Yuanyuan Fu
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- College of Agriculture of Tarim University, Aral, China
| | - Rangjian Qiu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Huifeng Ning
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Hao Liu
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Caixia Li
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Yang Gao
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| |
Collapse
|
6
|
Santos CS, Habyarimana E, Vasconcelos MW. Editorial: The impact of climate change on nutrient composition of staple foods and the role of diversification in increasing food system resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1087712. [PMID: 36755693 PMCID: PMC9900100 DOI: 10.3389/fpls.2023.1087712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ephrem Habyarimana
- Sorghum Breeding, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|