1
|
Tran TV, Jalil AA, Nguyen DTC, Nguyen TTT, Nguyen LTT, Nguyen CV, Alhassan M. Effect of pyrolysis temperature on characteristics and chloramphenicol adsorption performance of NH 2-MIL-53(Al)-derived amine-functionalized porous carbons. CHEMOSPHERE 2024; 355:141599. [PMID: 38548079 DOI: 10.1016/j.chemosphere.2024.141599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 04/08/2024]
Abstract
Several activities such as aquaculture, human and feedstock therapies can directly release antibiotics into water. Due to high stability, low hydrolysis and non-biodegradation, they can accumulate in the aqueous environment and transport to aquatic species. Here, we synthesized amine-functionalized porous carbons (ANC) by a direct-pyrolysis process of NH2-MIL-53(Al) as a sacrificial template at between 600 and 900 °C and utilized them to eliminate chloramphenicol antibiotic from water. The NH2-MIL-53(Al)-derived porous carbons obtained high surface areas (304.7-1600 m2 g-1) and chloramphenicol adsorption capacities (148.3-261.5 mg g-1). Several factors such as hydrogen bonding, Yoshida hydrogen bonding, and π-π interaction, hydrophobic interaction possibly controlled adsorption mechanisms. The ANC800 could be reused four cycles along with high stability in structure. As a result, NH2-MIL-53(Al)-derived porous carbons are recommended as recyclable and efficient adsorbents to the treatment of antibiotics in water.
Collapse
Affiliation(s)
- Thuan Van Tran
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | | | - Loan Thi To Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Chi Van Nguyen
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram, Ward 13, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam
| | - Mansur Alhassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB, 2134, Airport Road, Sokoto, Nigeria
| |
Collapse
|
2
|
Xing J, Huang J, Wang X, Yang F, Bai Y, Li S, Zhang X. Removal of low-concentration tetracycline from water by a two-step process of adsorption enrichment and photocatalytic regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118210. [PMID: 37229865 DOI: 10.1016/j.jenvman.2023.118210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Developing a high-performance method that can effectively control pollution caused by low concentrations of antibiotics is urgently needed. Herein, a novel three-dimensional PPy/Zn3In2S6 nanoflower composites were prepared for the comprehensive treatment of low-concentration tetracycline (Tc) hydrochloride in wastewater based on the adsorption/photocatalysis of Zn3In2S6 and the conductivity of PPy. In this preparation method, adsorption enrichment and photocatalytic regeneration were conducted in two steps, eliminating the dilution and dispersion effects of aqueous solvents on photocatalytic species and antibiotics. Results showed that Zn3In2S6 could effectively adsorb 87.85% of Tc at pH of 4.5 and photocatalytically degrade Tc at pH of 10.5. Although the adsorption capacity of Zn3In2S6 was slightly reduced after being combined with PPy, its photocatalytic efficiency was substantially enhanced. Specifically, 0.5%PPy/Zn3In2S6 could degrade 99.92% of the surface-enriched Tc in 1 h and induce the regeneration of the adsorption sites. Furthermore, the adsorption capacity remained above 85% even after recycling PPy/Zn3In2S6 ten times. The photocatalytic degradation mechanism analysis revealed that the enrichment of Tc on 0.5%PPy/Zn3In2S6 negatively impacts the photocatalytic efficiency, while •O2- and •OH radicals were the main oxidative species that played an important role in the photoregeneration process.
Collapse
Affiliation(s)
- Jianyu Xing
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China.
| | - Jumei Huang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Xi Wang
- SINO Shaanxi Nuclear Industry Comprehensive Analysis Testing CO., LTD., Xi'an, Shaanxi, 710024, PR China
| | - Feiying Yang
- SINO Shaanxi Nuclear Industry Comprehensive Analysis Testing CO., LTD., Xi'an, Shaanxi, 710024, PR China
| | - Yuehao Bai
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Sha Li
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Xinhao Zhang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| |
Collapse
|