1
|
Wang Y, Wang F, Li L, Zhang L, Song M, Jiang G. Comprehensive Toxicological Assessment of Halobenzoquinones in Drinking Water at Environmentally Relevant Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9125-9134. [PMID: 38743861 DOI: 10.1021/acs.est.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Halobenzoquinones (HBQs), an emerging unregulated category of disinfection byproduct (DBP) in drinking water, have aroused an increasing concern over their potential health risks. However, the chronic toxicity of HBQs at environmentally relevant concentrations remains largely unknown. Here, the occurrence and concentrations of 13 HBQs in drinking water from a northern megacity in China were examined using ultrahigh performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-MS/MS). Four HBQs, including 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), were detected beyond 50% occurrence frequency and at median concentrations from 4 to 50 ng/L. The chronic toxicity of these four HBQs to normal human colon and liver cells (FHC and THLE-2) was investigated at these concentrations. After 90 days of exposure, 2,5-DBBQ and 2,6-DCBQ induced the highest levels of oxidative stress and deoxyribonucleic acid (DNA) damage in colon and liver cells, respectively. Moreover, 2,5-DBBQ and 2,6-DCBQ were also found to induce epithelial-mesenchymal transition (EMT) in normal human liver cells via the extracellular signal regulated kinase (ERK) signaling pathway. Importantly, heating to 100 °C (boiling) was found to efficiently reduce the levels of these four HBQs in drinking water. These results suggested that environmentally relevant concentrations of HBQs could induce cytotoxicity and genotoxicity in normal human cells, and boiling is a highly efficient way of detoxification for HBQs.
Collapse
Affiliation(s)
- Yuanyuan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu S, Liu J. An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. TOXICS 2024; 12:247. [PMID: 38668470 PMCID: PMC11054029 DOI: 10.3390/toxics12040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
The safety of drinking water is a significant environmental issue of great concern for human health since numerous contaminants are often detected in drinking water and its sources. Boiling is a common household method used to produce relatively high-quality drinking water in some countries and regions. In this study, with the aid of an integrated approach of in vitro bioassays and non-target analysis based on high-resolution mass spectrometry coupled with liquid chromatography, alterations in endocrine-disrupting activities in tap water samples without and with boiling were revealed, as well as the potential endocrine-disrupting chemicals (EDCs) contributing to these alterations were identified. The organic extracts of tap water had no significant (ant)agonistic activities against an estrogen receptor (ER), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) at enrichment concentrations of ≤10 times, posing no immediate or acute health risk to humans. However, the presence of agonistic activities against PR and MR and antagonistic activities against ER, PR, GR, and MR in OEs of tap water at relatively higher enrichment concentrations still raise potential health concerns. Boiling effectively reduced antagonistic activities against these steroid hormone receptors (SHRs) but increased estrogenic and glucocorticoid activities in drinking water. Four novel potential EDCs, including one UV filter (phenylbenzimidazole sulfonic acid, PBSA) and three natural metabolites of organisms (beta-hydroxymyristic acid, 12-hydroxyoctadecanoic acid, and isorosmanol) were identified in drinking water samples, each of which showed (ant)agonistic activities against different SHRs. Given the widespread use of UV filters in sunscreens to prevent skin cancer, the health risks posed by PBSA as an identified novel EDC are of concern. Although boiling has been thought to reduce the health risk of drinking water contamination, our findings suggest that boiling may have a more complex effect on the endocrine-disrupting activities of drinking water and, therefore, a more comprehensive assessment is needed.
Collapse
Affiliation(s)
- Siyuan Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Li J, Chen J, Hu Z, Li X, Li M, Wang Y, Zhang Z, Liang X. Overlooked inorganic DBPs in trichloroisocyanuric acid (TCCA) disinfected indoor swimming pool: Evidences from concentration, cytotoxicity, and human health risk. CHEMOSPHERE 2023:139061. [PMID: 37247674 DOI: 10.1016/j.chemosphere.2023.139061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Trichloroisocyanuric acid (TCCA) is a popular disinfectant for swimming pools in China. However, the occurrence and importance of regulated disinfection byproducts (DBPs) in TCCA-disinfected swimming pools are less understood. This study analyzed 12 regulated DBPs (4 trihalomethanes (THMs), 5 haloacetic acid (HAAs), bromate, chlorate, and chlorite) in 85 swimming pool water samples and 17 input tap water samples from one swimming pool for 17 days continuously. Considering water temperature, pH, free chlorine, total chlorine, and urea, approximately 88%, 49%, 97%, 55%, and 97% of swimming pool water samples were within the water quality limits for China. Total concentrations of THMs, HAAs, and inorganic DBPs of 20.4-42.2, 82.0-229, and 100-729 μg/L in the swimming pool, and 16.6-28.3, 8.2-12.8, and 64.4-95.6 μg/L in the tap water, indicating inorganic DBPs are the dominant swimming pool and drinking water pollutants. Cancer risk values of regulated DBPs in swimming pools and input tap water are 2.7E-05 and 8.1E-05, respectively, and exceed the US EPA's threshold (1.0E-06). The non-cancer risk is below the US EPA's threshold. Following TCCA disinfection, the concentration and calculated cytotoxicity of regulated DBPs had a 3.6-fold and 1.9-fold increase, respectively. Inorganic DBPs contribute to the calculated concentration and cancer risks of DBPs in swimming pools and tap water at sufficient concentrations warranting regulation. This study provides data on 12 regulated DBPs in TCCA-disinfected indoor swimming pools, highlighting the importance of inorganic DBPs from evidences of concentration, cytotoxicity, and cancer risk for the first time.
Collapse
Affiliation(s)
- Jiafu Li
- School of Public Health, Soochow University, Suzhou, 215000, China.
| | - Jingsi Chen
- School of Public Health, Soochow University, Suzhou, 215000, China
| | - Zhiyong Hu
- School of Public Health and Management, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | - Xinyu Li
- School of Public Health, Soochow University, Suzhou, 215000, China
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011 China
| | - Yuan Wang
- Center for Disease Control and Prevention of Kunshan, Kunshan, 215301 China
| | - Zengli Zhang
- School of Public Health, Soochow University, Suzhou, 215000, China.
| | - Xiaojun Liang
- Center for Disease Control and Prevention of Kunshan, Kunshan, 215301 China.
| |
Collapse
|