1
|
He Q, Zhang Q, Li M, He J, Lin B, Wu NP, Chen JJ, Liu XH, Dong XQ. Harnessing diurnal dynamics: Understanding the influence of light-dark cycle on algal-bacterial symbiotic system under aniline stress. BIORESOURCE TECHNOLOGY 2025; 416:131796. [PMID: 39528023 DOI: 10.1016/j.biortech.2024.131796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
To assess the inherent effects of light-dark cycle on the aniline degradation and nitrogen removal in algal-bacterial symbiotic system, three groups with different photoperiods (0L:12D;6L:6D;12L:0D) were set up. The results revealed that the aniline degradation rate of the three systems all surpassed 99 %, the total nitrogen removal rate of Z2-6L:6D was approximately 36 % higher than Z1-0L:12D eventually, the Z1-0L:12D was restrained by NH4+-N assimilation and nitrification while anoxic denitrification in Z3-12L:0D. The disappearance of microalgae biomass was accompanied by the sharp decreased of polysaccharide in Z1 and longer illumination suppressed the secretion of extracellular polymeric substances, the Z3 yielded slightly superior biomass production despite the double illumination compared with Z2. Moreover, high throughput sequencing analysis illustrated that the microbial community structure in Z2 was more abundant and even than Z3, the TM7a, norank_f__norank_o__Saccharimonadales, Ellin6067 and Scenedesmus proliferated wildly and the photoinhibition to functional genus was effectively alleviated in Z2.
Collapse
Affiliation(s)
- Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Nan-Ping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jia-Jing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, PR China
| | - Xun-Hao Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiao-Qian Dong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
2
|
He Q, Zhang Q, Su J, Li M, Lin B, Wu N, Shen H, Chen J. Unraveling the mechanisms and responses of aniline-degrading biosystem to salinity stress in high temperature condition: Pollutants removal performance and microbial community. CHEMOSPHERE 2024; 362:142688. [PMID: 38942243 DOI: 10.1016/j.chemosphere.2024.142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
To explore the intrinsic influence of different salinity content on aniline biodegradation system in high temperature condition of 35 ± 1 °C, six groups at various salinity concentration (0.0%-5.0%) were applied. The results showed that the salinity exerted insignificant impact on aniline removal performance. The low-level salinity (0.5%-1.5%) stimulated the nitrogen metabolism performance. The G5-2.5% had excellent adaptability to salinity while the nitrogen removal capacity of G6-5.0% was almost lost. Moreover, high throughput sequencing analysis revealed that the g__norank_f__NS9_marine_group, g__Thauera and g__unclassified_f__Rhodobacteraceae proliferated wildly and established positive correlation each other in low salinity systems. The g__SM1A02 occupying the dominant position in G5 ensured the nitrification performance. In contrast, the Rhodococcus possessing great survival advantage in tremendous osmotic pressure competed with most functional genus, triggering the collapse of nitrogen metabolism capacity in G6. This work provided valuable guidance for the aniline wastewater treatment under salinity stress in high temperature condition.
Collapse
Affiliation(s)
- Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China.
| | - Junhao Su
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, 510663, Guangdong, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiajing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| |
Collapse
|
3
|
Seshan H, Santillan E, Constancias F, Chandra Segaran US, Williams RBH, Wuertz S. Metagenomics and metatranscriptomics suggest pathways of 3-chloroaniline degradation in wastewater reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166066. [PMID: 37549699 DOI: 10.1016/j.scitotenv.2023.166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Biological wastewater treatment systems are often affected by shifts in influent quality, including the input of toxic chemicals. Yet the mechanisms underlying the adaptation of activated sludge process performance are rarely studied in a controlled and replicated experimental setting, particularly when challenged with a sustained toxin input. Three replicate bench-scale bioreactors were subjected to a chemical disturbance in the form of 3-chloroaniline (3-CA) over 132 days, after an acclimation period of 58 days, while three control reactors received no 3-CA input. Ammonia oxidation was initially affected by 3-CA. Within three weeks of the experiment, microbial communities in all three treatment reactors adapted to biologically degrade 3-CA resulting in partial ammonia oxidation recovery. Combining process and microbial community data from amplicon sequencing with potential functions gleaned from assembled metagenomics and metatranscriptomics data, two putative degradation pathways for 3-CA were identified. The first pathway, determined from metagenomics data, involves a benzoate dioxygenase and subsequent meta-cleavage of the aromatic ring. The second, determined from intensive short-term sampling for gene expression data in tandem with 3-CA degradation, involves a phenol monooxygenase followed by ortho-cleavage of the aromatic ring. The relative abundances of amplicon sequence variants associated with the genera Gemmatimonas, OLB8, and Taibaiella correlated significantly with 3-CA degradation. Metagenome-assembled genome data also showed the genus OLB8 to be differentially enriched in treatment reactors, making it a strong candidate as 3-CA degrader. Using replicated reactors, this study has demonstrated the impact of a sustained stress on the activated sludge process. The unique and novel features of this study include the identification of putative pathways and potential degraders of 3-CA using long-term and short-term sampling in tandem with multiple methods in a controlled and replicated experiment.
Collapse
Affiliation(s)
- Hari Seshan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Uma Shankari Chandra Segaran
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore..
| |
Collapse
|
4
|
Lin B, Tan B, Liu X, Li M, Peng H, Zhang Q, Chen J, Shen H, He Q. Elucidating the roles of Cr(VI)-Cu(II) Co-pollution in the stress of aniline degradation stress: Insights into metabolic pathways and functional genes. BIORESOURCE TECHNOLOGY 2023; 387:129613. [PMID: 37544539 DOI: 10.1016/j.biortech.2023.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In order to examine the impact of Cu(II)-Cr(VI) co-pollution in printing and dyeing wastewater on the aniline biodegradation system (ABS), loading experiments were conducted on ABS at varying concentrations of Cu(II)-Cr(VI). The synergistic stress imposed by Cu(II)-Cr(VI) accelerated the deterioration of the systems, with only the C2-3 (2 mg/L Cr(VI)-3 mg/L Cu(II)) sustaining stable operation for 42 days. However, its nitrogen removal performance remained significantly impaired, resulting in a total nitrogen (TN) removal rate below 40%. High-throughput sequencing analysis revealed a stronger correlation between Cr(VI) and microbial diversity compared to Cu(II). Metagenomic sequencing results demonstrated that Cu(II) emerged as the dominant factor influencing the distribution of dominant bacteria in C2-3, as well as its contribution to contaminant degradation. The complex co-pollution systems hindered aniline degradation and nitrogen metabolism through the combined bio-toxicity of heavy metals and aniline, thereby disrupting the transport chain within the systems matrix.
Collapse
Affiliation(s)
- Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd, Wuhan 430056, China
| | - Xiangyu Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China
| | - Haojin Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China.
| | - Jiajing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Lin B, Tan B, Zhang Q, Li M, Peng H, Su J, He J, Zhang Y, Liu X, Wu N. Unraveling the nexus of Cr (Ⅵ), Aniline, and Microbial Ecology on aniline-degrading biosystem: Removal efficiency, sludge type, microbial ecology. BIORESOURCE TECHNOLOGY 2023; 382:129185. [PMID: 37196741 DOI: 10.1016/j.biortech.2023.129185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
In order to explore the stress principle of Cr (Ⅵ) on aniline biodegradation system, a control group and experimental groups with the concentration of Cr (Ⅵ) at 2, 5, 8 mg/L were set up. The results demonstrated that Cr (Ⅵ) had minimal effects on the degradation efficiency of aniline but significantly inhibited nitrogen removal function. When Cr (Ⅵ) concentration was below 5 mg/L, the nitrification performance recovered spontaneously, while denitrification performance was severely impaired. Furthermore, the secretion of extracellular polymeric substances (EPS) and its fluorescence substance concentration were strongly inhibited with increasing Cr (Ⅵ) concentration. High-throughput sequencing revealed that the experimental groups were enriched with Leucobacter and Cr (Ⅵ)-reducing bacteria, but the abundance of nitrifiers and denitrifiers was significantly decreased compared to the control group. Overall, the effects of Cr (Ⅵ) stress at different concentrations on nitrogen removal performance were more significant than those on aniline degradation.
Collapse
Affiliation(s)
- Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd, Wuhan, 430056, P.R. China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, P.R. China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, P.R. China
| | - Haojin Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Xiangyu Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| |
Collapse
|
6
|
Yin Y, Zhang Q, Peng H. Retrospect and prospect of aerobic biodegradation of aniline: Overcome existing bottlenecks and follow future trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117133. [PMID: 36584469 DOI: 10.1016/j.jenvman.2022.117133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Aniline is a highly bio-toxic industrial product, even at low concentrations, whose related wastewater has been flowing out worldwide on a large scale along with human production. As a green technology, aerobic biological treatment has been widely applied in industrial wastewater and exhibited various characteristics in the field of aniline wastewater. Meanwhile, this technology has shown its potential of synchronous nitrogen removal, but it still consumes energy badly. In the face of resource scarcity, this review comprehensively discusses the existing research in aerobic biodegradation of aniline wastewater to find out the developmental dawn of aerobic biological treatment. Primarily, it put forward the evolution history details of aniline biodegradation from pure culture to mixed culture and then to simultaneous nitrogen removal. On this basis, it presented the existing challenges to further expand the application of aerobic biotechnology, including the confusions of aniline metabolic mechanism, the development of co-degradation of multiple pollutants and the lack of practical experience of bioreactor operation for aniline and nitrogen removal. Additionally, the prospects of the technological shift to meet the needs of an energy-conserving society was described according to existing experiences and feasibility. Including but not limiting to the development of multifunctional bacteria, the reduction of greenhouse gases and the combination of green technologies.
Collapse
Affiliation(s)
- Yixin Yin
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Haojin Peng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|