1
|
Wu T, Ding J, Sun HJ, Pang JW, Zhong L, Zhao L, Zhang LY, Ren NQ, Yang SS. Deciphering the roles of attached and suspended sludges in simultaneous nitrogen and phosphorus removal in an IFAS system based on metagenomic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122567. [PMID: 39303598 DOI: 10.1016/j.jenvman.2024.122567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Integrated fixed-film activated sludge (IFAS) system, an improvement of the activated sludge process, combines the advantages of both attached sludge (AS) and suspended sludge (SS). This study aimed to fully decipher the roles of AS and SS in simultaneous N and P removal in an IFAS system through metagenomic analysis. It was found that AS contributed about 84.04%, 97%, and 95.12% to exogenous NO3--N reduction, endogenous NO3--N reduction, and endogenous NO2--N reduction, respectively. Compared with AS, SS exhibited a greater contribution to anaerobic P release (69.06%) and aerobic P uptake (73.48%). Nitrate and nitrite reductase enzymes showed higher activities in AS, while the activities of exopolyphosphatase and alkaline phosphatase D were more active in SS. P content further indicated that in AS, only a small amount of P was stored in EPS, with most presented intracellularly. In SS, the amount of P stored in EPS was found to be higher. Metagenomic analysis revealed genes related to the synthesis and degradation of endogenous carbon were higher in AS, whereas the TCA cycle exhibited higher activity in SS. P removal-related genes (such as ppk2, ppx, and adk) was significantly higher in SS than in AS. The alteration of genes associated with nitrogen metabolism suggested that the microbes in AS had a higher capacity for nitrification and denitrification. In summary, the discrepancy in the roles of AS and SS in N and P removal in IFAS can be attributed to variations in enzyme activity, P storage in EPS, microbial community composition, and functional gene abundance.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing, 100096, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
3
|
Zhang Y, He Y, Huang J, Chen J, Jia X, Peng X. Dimorphism of Candida tropicalis and its effect on nitrogen and phosphorus removal and sludge settleability. BIORESOURCE TECHNOLOGY 2023; 382:129186. [PMID: 37201869 DOI: 10.1016/j.biortech.2023.129186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Candida tropicalis PNY, a novel dimorphic strain with the capacity of simultaneous carbon, nitrogen and phosphorus removal in anaerobic and aerobic conditions, was isolated from activated sludge. Dimorphism of C. tropicalis PNY had effect on removing nitrogen and phosphorous and slightly affected COD removal under aerobic condition. Sample with high hypha formation rate (40 ± 5%) had more removal efficiencies of NH4+-N (50 mg/L) and PO43--P (10 mg/L), which could achieve 82.19% and 97.53%, respectively. High hypha cells dosage exhibited good settleability and filamentous overgrowth was not observed. According to label-free quantitative proteomics assays. Up-regulated proteins involved in the mitogen-activated protein kinase (MAPK) pathway indicated the active growth and metabolism process of sample with high hypha formation rate (40 ± 5%). And proteins concerning about glutamate synthetase and SPX domain-contain protein explain for the nutrient removal mechanism including assimilation of ammonia and polyphosphates synthesis.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Jiejing Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Wu T, Ding J, Zhong L, Zhao YL, Sun HJ, Pang JW, Zhao L, Bai SW, Ren NQ, Yang SS. Synergistic analysis of performance, functional genes, and microbial community assembly in SNDPR process under Zn(II) stress. ENVIRONMENTAL RESEARCH 2023; 224:115513. [PMID: 36801232 DOI: 10.1016/j.envres.2023.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
One of the most prevalent heavy metals found in rural sewage is Zn(II), while its effect on simultaneous nitrification, denitrification and phosphorus removal (SNDPR) remains unclear. In this work, the responses of SNDPR performance to long-term Zn(II) stress were investigated in a cross-flow honeycomb bionic carrier biofilm system. The results indicated that Zn(II) stress at 1 and 5 mg L-1 could increase nitrogen removal. Maximum ammonia nitrogen, total nitrogen, and phosphorus removal efficiencies of up to 88.54%, 83.19%, and 83.65% were obtained at Zn(II) concentration of 5 mg L-1. The functional genes, such as archaeal amoA, bacterial amoA, NarG, NirS, NapA, and NirK, also reached the highest value at 5 mg L-1 Zn(II), with the absolute abundances of 7.73 × 105, 1.57 × 106, 6.68 × 108, 1.05 × 109, 1.79 × 108, and 2.09 × 108 copies·g-1 dry weight, respectively. The neutral community model demonstrated that deterministic selection was responsible for the system's microbial community assembly. Additionally, response regimes with extracellular polymeric substances and cooperation among microorganisms facilitated the stability of the reactor effluent. Overall, the findings of this paper contribute to improving the efficiency of wastewater treatment.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- National Engineering Research Center for Bioenergy, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Lin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shun-Wen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|