1
|
Moreira D, Alves GS, Rodrigues JMM, Estevam BR, Sales DH, Américo-Pinheiro JHP, Vasconcelos AFD, Boina RF. Exploring the biosorption of nickel and lead by Fusarium sp. biomass: kinetic, isotherm, and thermodynamic assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59592-59609. [PMID: 39361204 DOI: 10.1007/s11356-024-35192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Fungal biomass is as a cost-effective and sustainable biosorbent utilized in both active and inactive forms. This study investigated the efficacy of inactivated and dried biomass of Fusarium sp. in adsorbing Ni2+ and Pb2+ from aqueous solutions. The strain underwent sequential cultivation and was recovered by filtration. Then, the biomass was dried in an oven at 80 ± 2 °C and sieved using a 0.1-cm mesh. The biosorbent was thoroughly characterized, including BET surface area analysis, morphology examination (SEM), chemical composition (XRF and FT-IR), thermal behavior (TGA), and surface charge determination (pH-PZC and zeta potential). The biosorption mechanism was elucidated by fitting equilibrium models of kinetics, isotherm, and thermodynamic to the data. The biosorbent exhibited a neutral charge, a rough surface, a relatively modest surface area, appropriate functional groups for adsorption, and thermal stability above 200 °C. Optimal biosorption was achieved at 25 ± 2 °C, using 0.05 g of adsorbent per 50 mL of metallic ion solution at initial concentrations ranging from 0.5 to 2.0 mg L-1 and at pH 4.5 for Pb2+ and Ni2+. Biosorption equilibrium was achieved after 240 min for Ni2+ and 1440 min for Pb2+. The process was spontaneous, mainly through chemisorption, in monolayer for Ni2+ and multilayer for Pb2+, with efficiencies of over 85% for both metallic ion removal. These findings underscore the potential of inactive and dry Fusarium sp. biomass (IDFB) as a promising material for the biosorption of Ni2+ and Pb2+.
Collapse
Affiliation(s)
- Daniele Moreira
- Department of Civil Engineering, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, 15385-000, Brazil.
| | - Gabriela Souza Alves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - João Marcos Madeira Rodrigues
- Department of Biotechnology, Faculty of Sciences and Letters, São Paulo State University (UNESP), Assis, SP, 19806-900, Brazil
| | - Bianca Ramos Estevam
- Department of Process and Product Development, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil
| | - Douglas Henrique Sales
- Department of Physics, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forestry, Soil and Environmental Science, Faculty of Agricultural Sciences, School of Technology and Sciences UNESP, Botucatu, SP, 18610-034, Brazil
| | - Ana Flora Dalberto Vasconcelos
- Department of Chemistry and Biochemistry, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| | - Rosane Freire Boina
- Department of Planning, Urbanism and Environment, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|
2
|
Banerjee J, Bar N, Basu RK, Das SK. Biosorption of Ni(II) by Ni(II) resistant S. cerevisiae AJ208: potential study with nutritive elements and GA modeling. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2175692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
| | - Nirjhar Bar
- Department of Chemical Engineering, Kolkata, West Bengal, India
- St. James’ School, Kolkata, West Bengal, India
| | | | - Sudip Kumar Das
- Department of Chemical Engineering, Kolkata, West Bengal, India
| |
Collapse
|