1
|
Li T, Song Y, Zhang Z. DFT Study on the Mechanism of As(III) Oxidation in the Presence of Fe(II) and O 2. J Phys Chem A 2024; 128:10143-10150. [PMID: 39555864 DOI: 10.1021/acs.jpca.4c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In natural aquatic environments, the fate of arsenic (As) is significantly influenced by redox processes involving iron (Fe) species. Understanding the mechanisms governing As transformation in the presence of Fe species is crucial for comprehending its environmental impact and advancing remediation strategies. In this work, the oxidation of As(III) in oxygenated Fe(II) solutions was investigated. Density functional theory (DFT) methods were employed to explore the reaction of Fe(II) with 3O2 and subsequent As(III) oxidation by reactive species generated from Fe(II) oxidation. Electron paramagnetic resonance analysis was utilized to confirm the formation of reactive species in the solution. Based on these results, it is concluded that 1O2, ·O2H, and Fe(IV) are the critical oxidants responsible for As(III) oxidation in oxygenated Fe(II) solutions under circumneutral conditions. 1O2 readily oxidizes As(III) by forming an arsenic superoxide AsO5H3. Interaction of As(III) with ·O2H or Fe(IV) leads to As(IV), which is further oxidized to As(V) by 3O2, Fe(III), and Fe(IV).
Collapse
Affiliation(s)
- Tianshuang Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Yunfeng Song
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhi Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| |
Collapse
|
2
|
Xiong W, Huang Q, Li L, Li Y. Effect of Fenton-Based Processes on Arsenic Removal in the Presence of Humic Acid. TOXICS 2024; 12:845. [PMID: 39771060 PMCID: PMC11679137 DOI: 10.3390/toxics12120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Geogenic arsenic (As) contamination in groundwater poses a significant public health risk in many regions worldwide. Previous studies have reported hydrogen peroxide (H2O2) concentrations ranging from 5.8 to 96 μmol L-1 in rainwater, which may contribute to the oxidation and removal of As. However, the influence of natural organic matter, such as humic acid (HA), on rainwater-borne H2O2-induced Fenton processes for the oxidation and removal of As remains unclear. In this study, the Fenton process was employed to investigate changes in As(V), As(III), and their mixtures, both in the presence and absence of HA. The results showed that low concentrations of HA (0-10 mg/L) promoted the oxidation of As(III) and removal of As(V) when As(V) and As(III) were present individually. However, when As(V) and As(III) coexisted, HA inhibited the Fenton process for As(V) removal. This inhibition was likely due to As(III) competing strongly with HA for hydroxyl radicals in the Fenton reaction system. Additionally, the presence of HA hindered the Fe(III)-driven removal of As(V), a product of the Fenton reaction. These findings further enhance our understanding of the potential role of rainwater-borne H2O2 in the transformation of As species in open water environments.
Collapse
Affiliation(s)
- Wenming Xiong
- Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China;
| | - Qixuan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Q.H.); (L.L.)
| | - Langlang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Q.H.); (L.L.)
| | - Yongjun Li
- Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China;
| |
Collapse
|
3
|
Wen N, Liu J, Qin W, Wang X, Zhu C, Zhou D. Critical roles of low-molecular-weight organic acid in enhancing hydroxyl radical production by ferrous oxidation on γ-Al 2O 3 mineral surface. WATER RESEARCH 2024; 261:122052. [PMID: 38991245 DOI: 10.1016/j.watres.2024.122052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-Al2O3 mineral surface were examined. Results demonstrated that adding 0.5 mM oxalate (OA) or citrate (CA) to the γ-Al2O3/Fe(II) system (28.1 μM) significantly enhanced •OH production by 1.9-fold (51.9 μM) and 1.3-fold (36.2 μM), respectively, whereas succinate (SA) exhibited limited effect (30.7 μM). Raising OA concentration to 5 mM further promoted •OH yield to 125.0 μM after 24 h. Deeper analysis revealed that CA facilitated the dissolution of adsorbed Fe(II) and its subsequent oxygenation by O2 through both one- and two-electron transfer mechanisms, whereas OA enhanced the adsorption of dissolved Fe(II) and more efficient two-electron transfer for H2O2 production. Additionally, LMWOAs presence favored the formation of iron minerals with poor crystallinity like ferrihydrite and lepidocrocite rather than well-crystallized forms such as goethite. The distinct impacts of various LMWOAs on Fe(II) oxidation and •OH generation underscore their unique roles in the redox processes at mineral surface, consequently modulating the environmental fate of prototypical pollutants like phenol.
Collapse
Affiliation(s)
- Nihong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Jinsong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Wenxiu Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui Province, PR China.
| | - Xiaolei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Li T, Guo Z. Mechanisms of arsenic oxidation in the presence of pyrite: An experimental and theoretical study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171072. [PMID: 38382617 DOI: 10.1016/j.scitotenv.2024.171072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
The mobility and toxicity of arsenic are significantly influenced by the natural minerals. A comprehensive understanding of the interaction between arsenic and minerals is crucial for elucidating the natural behavior of arsenic and advancing arsenic remediation strategies. In this study, the mechanism of As (III) oxidation in the presence of pyrite without light irritation was investigated by experimental and theoretical approaches. Quenching experiment and electron paramagnetic resonance analysis confirm •OH and •O2H is the predominant oxidant of As (III) under acidic and alkaline condition, respectively. Density Functional Theory (DFT) calculations indicate on the pyrite surface, the surface oxygen species is insignificant in As(III) oxidation but crucial for the generation of reactive oxygen species (ROS). In the solution, •OH, •O2H, Fe(IV), and 1O2 are the favored oxidants for As(III), while ROS, 3O2, and Fe(III) possess the capability to convert As(IV) to As(V). The major mechanism of As(III) oxidation in the presence of pyrite without light irritation primarily involves three elementary reactions: (1) •OH facilitating As(III) conversion to As(IV), (2) 3O2 oxidizing As(IV) to As(V) and •O2H, and (3) As(V) and •OH generating in •O2H reacting with As(III). As(IV) emerges as a critical intermediate capable of initiating chain reactions in arsenic oxidation. This study provides atomic-scale insight into the As(III) oxidation in pyrite suspension, which is important for understanding arsenic behavior in analogous oxidation systems.
Collapse
Affiliation(s)
- Tianshuang Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
5
|
Li D, Sun J, Fu Y, Hong W, Wang H, Yang Q, Wu J, Yang S, Xu J, Zhang Y, Deng Y, Zhong Y, Peng P. Fluctuating redox conditions accelerate the electron storage and transfer in magnetite and production of dark hydroxyl radicals. WATER RESEARCH 2024; 248:120884. [PMID: 38006832 DOI: 10.1016/j.watres.2023.120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Magnetite (Fe3O4), known as a geo-battery that can store and transfer electrons, often co-occurs with sulfide in subsurface environments with fluctuating redox conditions. However, little is known about how fluctuating redox conditions (e.g., sulfidation-oxidation) affect the electron storage and transfer in Fe3O4 that was associated with the production of dark hydroxyl radicals (⋅OH) and the oxidation of dissolved organic matter (DOM). This study revealed that Fe3O4 sulfidated by sulfide (S-Fe3O4) at neutral pH exhibited higher ⋅OH production upon oxygenation than Fe3O4, in which the cumulative ⋅OH concentration increased with increasing initial S/Fe ratio (≤ 0.50), sulfidation duration and number of sulfidation-oxidation cycle. X-ray photoelectron spectroscopy and wet-chemical analyses of Fe and S species of S-Fe3O4 showed that sulfidation enables electron storage in Fe3O4 by increasing both structural and surface Fe(II). Sulfide was converted into S0, acid volatile sulfur (AVS), and chromium-reducible sulfur (CRS) during Fe3O4 sulfidation. S-Fe3O4 with lower AVS/CRS ratio exhibited higher reactivity to produce ⋅OH, indicating the important role of CRS in transferring electrons from Fe(II) to O2. Based on quenching experiments and electron paramagnetic resonance analysis, a one-step two-electron transfer mechanism was proposed for O2 reduction during S-Fe3O4 oxygenation, and surface-bound rather than free ⋅OH were identified as the primary reactive oxygen species. The ⋅OH from S-Fe3O4 oxygenation was shown to be efficient in degradation of DOM. Overall, these results suggested that sulfidation-oxidation can accelerate the electron storage and transfer in Fe3O4 for dark ⋅OH production, having an important impact on the carbon cycling in subsurface environments.
Collapse
Affiliation(s)
- Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China
| | - Jieyi Sun
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yibo Fu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wentao Hong
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Xu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunfei Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China.
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China
| |
Collapse
|
6
|
Wang S, Wen J, Mu L, Hu X, Feng R, Jia Y. Highly active complexes of pyrite and organic matter regulate arsenic fate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131967. [PMID: 37421861 DOI: 10.1016/j.jhazmat.2023.131967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Arsenic (As) presents high toxicity and strong carcinogenicity, and its health risks are regulated by its oxidation state and speciation. As can form complexes with the surface of minerals or organic matter through adsorption, affecting its toxicity and bioavailability. However, the regulation effect of the interaction of coexisting minerals and organic matter on As fate remains largely unknown. Here, we discovered that minerals (e.g., pyrite) and organic matter (e.g., alanyl glutamine, AG) can form pyrite-AG complexes, promoting As(III) oxidation under simulated solar irradiation. The formation of pyrite-AG was explored in terms of the interaction of surface oxygen atoms, electron transfer and crystal surface changes. From the perspective of atoms and molecules, pyrite-AG showed more oxygen vacancies, stronger reactive oxygen species (ROS) and a higher electron transport capacity than pyrite alone. Compared with pyrite, pyrite-AG effectively promoted the conversion of highly toxic As(III) to less toxic As(V) due to the enhanced photochemical properties. Moreover, quantification and capture of ROS confirmed that hydroxyl radicals (•OH) played an important role in As(III) oxidation in the pyrite-AG and As(III) system. Our results provide previously unidentified perspectives on the effects and chemical mechanisms of highly active complexes of mineral and organic matter on As fate and provide new insights into the risk assessment and control of As pollution.
Collapse
Affiliation(s)
- Shuting Wang
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Jingyu Wen
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Yuying Jia
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|