1
|
Ilktaç R, Bayir E. Innovative alginate-clay shell and magnetite-gelatin core composite for multifaceted contaminant removal: Cadmium, thiabendazole and bacterial adsorption from aqueous solutions. Int J Biol Macromol 2025; 289:138817. [PMID: 39694371 DOI: 10.1016/j.ijbiomac.2024.138817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
In this study, a novel magnetic composite adsorbent with an alginate-chamotte clay outer layer and a gelatin-magnetite core was synthesised for effective contaminant removal from aqueous solutions. The alginate component ensures biocompatibility, chamotte clay enhances adsorption, gelatin provides mechanical strength, and magnetite enables easy recovery of the adsorbent. The composite material was characterised using Fourier-transform infrared, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive X-ray analysis, micro-computed tomography, Brunauer-Emmett-Teller analysis and dynamic mechanical analysis techniques. Response surface methodology was employed to optimise cadmium and thiabendazole adsorption. Optimal conditions for cadmium removal were achieved at pH 7 using 500 mg of adsorbent, with a 30-min contact time and a 5 mL sample volume. Additionally, thiabendazole adsorption was optimal at pH 3, with a 65-min contact time. Thermodynamic and kinetic experiments revealed that both adsorption processes were spontaneous and endothermic and followed a pseudo-second-order model. Cadmium adsorption aligned with Langmuir isotherm , while thiabendazole adsorption followed Freundlich isotherm . The adsorbent also showed high antibacterial efficiency, effectively removing both Gram-positive S. aureus and Gram-negative E. coli, with adsorption capacities of 43.86 mg g-1 for cadmium, 5.01 mg g-1 for thiabendazole, 2.5 × 1010 CFU g-1 for E. coli and 6.7 × 1010 CFU g-1 for S. aureus. These results highlight the multifunctional potential of the adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Raif Ilktaç
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), 35100, Izmir, Türkiye.
| | - Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), 35100, Izmir, Türkiye
| |
Collapse
|
2
|
Mchich Z, Stefan DS, Mamouni R, Saffaj N, Bosomoiu M. Eco-Friendly Hydrogel Beads from Seashell Waste for Efficient Removal of Heavy Metals from Water. Polymers (Basel) 2024; 16:3257. [PMID: 39684002 DOI: 10.3390/polym16233257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study is to develop a calcium carbonate-based adsorbent derived from Cellana Tramoscrica seashells, incorporated into a sodium alginate matrix (Na-Alg@CTs) to form hydrogel beads, for the efficient removal of Cu (II) and Zn (II) heavy metals from aqueous solutions. XRD, SEM/EDS, and FTIR analysis confirm the successful synthesis and characterization of the fabricated adsorbent. The adsorption study of Cu (II) and Zn (II) onto Na-Alg@CTs hydrogel beads revealed that the Langmuir model was the most suitable for characterizing the adsorption isotherms, suggesting monolayer coverage. Na-Alg@CTs exhibited a maximum Langmuir adsorption capacity of 368.58 mg/g and 1075.67 mg/g for Cu (II) and Zn (II), respectively. Additionally, the kinetics followed the pseudo-second-order model, indicating that the adsorption process is primarily governed by chemisorption. The thermodynamic study suggests that the uptake of metal ions on Na-Alg@CTs hydrogel beads is spontaneous and endothermic. The exceptional adsorption capacity, eco-friendly nature, and low-cost characteristics of Na-Alg@CTs hydrogel beads make them an ideal adsorbent for the removal of Cu (II) and Zn (II) from wastewater.
Collapse
Affiliation(s)
- Zaineb Mchich
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Rachid Mamouni
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Nabil Saffaj
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
3
|
Sajin JA, Sreenivasan VS, Bright BM, Saravanan MSS, Tharayil T, Anish RK, Natarajan M, Bharathiraja G, Binoj JS. Thermite frass biomass and surface modified biowaste coir fiber reinforced biocomposites-Conversion of waste to useful products. Biopolymers 2024; 115:e23616. [PMID: 39031485 DOI: 10.1002/bip.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Polymer composites are known for its light weight and specific mechanical characteristics. This study examines sodium hydroxide (NaOH)-treated coir fiber, an agro-leftover, stuffed in a polyester matrix with termite frass powder, a bio-leftover for possible use in light-weight structural applications. Composite samples were made using compression molding and NaOH-treated coir fiber reinforced hybrid polymer composite (TCRHPC) with 40 wt% treated coir fiber and 1, 2, 3, and 4 wt% termite frass powder. TCRHPC samples mechanical, water captivation, tribological, and thermal properties were affected by termite frass powder wt%. The TCRHPC sample with 3 wt% termite frass powder has excellent mechanical properties, which improved by tensile (41.6%), flexural (28.57%), impact (43.7%), and hardness (18.84%) properties. With perfect water captivation and low weight increases in normal water (0.017 g), seawater (0.015 g), and NaOH solution (0.010 g), the identical composite sample with thermal stability up to 238°C also reduced wear mass by 5.27%. Conversely, filler agglomeration and heterogeneous dispersion in composite sample impair thermo-mechanical characteristics of TCRHPC containing 4 wt% termite frass powder. The bonding among polyester, treated coir fiber, and termite frass powder in composites were appraised with the aid of fractographic images of TCRHPC samples. The results show that TCRHPC material suits well for support structures requiring lesser weight.
Collapse
Affiliation(s)
- Justin Abraham Sajin
- Department of Mechanical Engineering, Sree Buddha College of Engineering, Pattoor, Kerala, India
| | | | - Brailson Mansingh Bright
- Department of Mechanical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India
| | | | - Trijo Tharayil
- Department of Mechanical Engineering, Sree Buddha College of Engineering, Pattoor, Kerala, India
| | - Raveendra Kurup Anish
- Department of Mechanical Engineering, Amal Jyothi College of Engineering, Kottayam, Kerala, India
| | - Manikandan Natarajan
- Department of Mechanical Engineering, School of Engineering, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Govindarajan Bharathiraja
- Institute of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India
| | - Joseph Selvi Binoj
- Institute of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India
| |
Collapse
|
4
|
Naboulsi A, Bouzid T, Grich A, Regti A, El Himri M, El Haddad M. Understanding the column and batch adsorption mechanism of pesticide 2,4,5-T utilizing alginate-biomass hydrogel capsule: A computational and economic investigation. Int J Biol Macromol 2024; 275:133762. [PMID: 38986974 DOI: 10.1016/j.ijbiomac.2024.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Water pollution has remained a pressing concern in recent years, presenting multifaceted challenges in search of effective mitigation strategies. Our study, which targets mitigating pollution caused by 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a significant aquatic pollutant, is innovative in its approach. We have identified adsorption as a promising, cost-effective method for its removal. Our research strategy involves dynamic adsorption utilizing a peristaltic pump and composite beads containing activated carbon and sodium alginate (CA/Alg), a novel combination that mimics industrial processes. To optimize column adsorption, we examine bead stability under varied pH conditions and optimize parameters such as concentration, adsorption time, and pH through batch adsorption experiments, employing experimental design techniques. Additionally, we optimize column adsorption factors, including bead height, circulation time, and flow rate, crucial for process efficiency, and under these optimum conditions (C2,4,5-T = 80 ppm. pH = 2, t = 27h30min, H = 30 cm and D = 0.5 mL/min) the capacity of adsorption equal to 748.25 mg/g. Characterization techniques like SEM, EDX, BET analysis, XRD, and FTIR provide insights into the morphology, composition, surface area (331 m2/g), pore volume (0.11 cm3/g), crystal structure, and functional groups of the CA-P/Alg adsorbent. Theoretical analysis elucidates the adsorption mechanism and interaction with pollutants. Economic analysis, encompassing CAPEX and OPEX estimation, evaluates the feasibility of implementing this cleanup method at an industrial scale, considering initial investment and ongoing operational costs, indicating potential savings of 64 % compared with the activated carbon normally used on the Moroccan market. This comprehensive and innovative approach addresses water pollution challenges effectively while ensuring economic viability for industry-scale implementation.
Collapse
Affiliation(s)
- Aicha Naboulsi
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco.
| | - Taoufiq Bouzid
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Abdelali Grich
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Abdelmajid Regti
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Mamoune El Himri
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Mohammadine El Haddad
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| |
Collapse
|
5
|
Aziz K, Haydari I, Kaya S, Mandi L, Ouazzani N, Aziz F. Phenolic compounds removal in table olive processing wastewater by column adsorption: conditions' optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38835-38845. [PMID: 36882652 DOI: 10.1007/s11356-023-26180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The annual production of wastewater from the olive table industry poses a serious problem owing to its high organic matter load, which is highly concentrated in phenolic compounds (PCs) and inorganic materials. This research used adsorption to recover PCs from table olive wastewater (TOWW). Activated carbon was employed as a novel adsorbent. The activated carbon was obtained from olive pomace (OP) and activated using a chemical agent (ZnCl2). Fourier transform infrared spectroscopy analysis (FTIR), Brunauer-Emmett-Teller analysis (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the activated carbon sample. To optimize the biosorption conditions of PCs (adsorbent dose (A), temperature (B), and time (C)), a central composite design (CCD) model was used. An adsorption capacity was 1952.34 mg g-1 for optimal conditions with an activated carbon dose of 0.569 g L-1, a temperature of 39 °C, and a contact time of 239 min. The pseudo-second-order and Langmuir models as kinetic and isothermal mathematical models were proved to be more appropriate for the interpretation of the adsorption phenomenon of PCs. PC recovery was performed in fixed-bed reactors. The results of the adsorption of PCs from TOWW by activated carbon could be an effective process at a low cost.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, B.P 8106, 80000, Agadir, Morocco
| | - Imane Haydari
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Laila Mandi
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco.
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco.
| |
Collapse
|
6
|
Kjidaa B, Mchich Z, Aziz K, Saffaj N, Saffaj T, Mamouni R. Flexible Synthesis of Bio-Hydroxyapatite/Chitosan Hydrogel Beads for Highly Efficient Orange G Dye Removal: Batch and Recirculating Fixed-Bed Column Study. ACS OMEGA 2024; 9:8543-8556. [PMID: 38405537 PMCID: PMC10883016 DOI: 10.1021/acsomega.3c10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
The use of fish waste as a source material for the development of functional beads has significant potential applications in the fields of materials science and environmental sustainability. In this study, a biomaterial bead of chitosan was cross-linked with bio-hydroxyapatite (Bio-Hap/Cs) through the encapsulation process to create a stable and durable material. The beads are characterized using scanning electron microscopy combined with energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The adsorption efficiency of Bio-Hap/Cs hydrogel beads was evaluated by using Orange G (OG) dye in both batch and recirculating column systems, and the effect of various parameters on the adsorption capacity was investigated. In the batch study, it was found that OG removal increased with an increasing pH and adsorbent dose. However, in the recirculating column system, a higher bed height and lower flow rate led to increased removal of the OG dye. The kinetic study indicated that the pseudo-second-order model provided a good description of OG adsorption onto Bio-Hap/Cs beads in both batch and recirculating processes, with a high coefficient correlation. The maximum adsorbed amounts are found to be 19.944 mg g-1 and 9.472 mg g-1 in batch and recirculating processes, respectively. Therefore, Bio-Hap/Cs hydrogel beads have demonstrated an effective and reusable material for OG dye remediation from aqueous solutions using recirculating adsorption processes.
Collapse
Affiliation(s)
- Bouthayna Kjidaa
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zaineb Mchich
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Khalid Aziz
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nabil Saffaj
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Taoufiq Saffaj
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques of
Fez, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Rachid Mamouni
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
7
|
Sobolev K, Omelyanchik A, Shilov N, Gorshenkov M, Andreev N, Comite A, Slimani S, Peddis D, Ovchenkov Y, Vasiliev A, Magomedov KE, Rodionova V. Iron Oxide Nanoparticle-Assisted Delamination of Ti 3C 2T x MXenes: A New Approach to Produce Magnetic MXene-Based Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:97. [PMID: 38202551 PMCID: PMC10781054 DOI: 10.3390/nano14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Ti3C2Tx MXene is one of the most comprehensively studied 2D materials in terms of its adsorptive, transport, and catalytic properties, cytotoxic performance, etc. Still, conventional MXene synthesis approaches provide low single-flake MXene yield and frequently uncontrollable properties, demanding further post-processing. The MXene family also lacks magnetism, which is helpful for producing effective nanoadsorbents as their magnetic decantation is the cheapest and most convenient way to remove the spent adsorbent from water. Composite materials consisting of magnetic nanoparticles grown on top of MXene flakes are commonly used to provide magnetic properties to the resulting nanocomposite. In this paper, we study the possibility to delaminate multilayer Ti3C2Tx MXene sheets directly by growing iron oxide magnetic nanoparticles inside their interlayer spacing. We find out that, with a mass fraction of particles comparable or exceeding that of MXenes, their growth is accompanied by an effective enhancement of single-layer MXene yield and suitable magnetic properties of the resulting composite. The developed approach can be further used for simplifying synthesis protocols to obtain magnetic MXene-based nanoadsorbents with tunable properties.
Collapse
Affiliation(s)
- Kirill Sobolev
- REC Smart Materials and Biomedical Applications, Immanuel Kant Baltic Federal University, A. Nevskogo Str. 14, 236014 Kaliningrad, Russia; (A.O.); (K.E.M.)
- Department of Materials Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Alexander Omelyanchik
- REC Smart Materials and Biomedical Applications, Immanuel Kant Baltic Federal University, A. Nevskogo Str. 14, 236014 Kaliningrad, Russia; (A.O.); (K.E.M.)
- Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy (D.P.)
- Institute of Structure of Matter, National Research Council, nM-Lab, Monterotondo Scalo, 00015 Rome, Italy
| | - Nikolai Shilov
- REC Smart Materials and Biomedical Applications, Immanuel Kant Baltic Federal University, A. Nevskogo Str. 14, 236014 Kaliningrad, Russia; (A.O.); (K.E.M.)
| | - Mikhail Gorshenkov
- National University of Science and Technology “MISiS”, Leninsky Pr. 4b1, 119049 Moscow, Russia (Y.O.)
| | - Nikolai Andreev
- REC Smart Materials and Biomedical Applications, Immanuel Kant Baltic Federal University, A. Nevskogo Str. 14, 236014 Kaliningrad, Russia; (A.O.); (K.E.M.)
- National University of Science and Technology “MISiS”, Leninsky Pr. 4b1, 119049 Moscow, Russia (Y.O.)
| | - Antonio Comite
- Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy (D.P.)
| | - Sawssen Slimani
- Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy (D.P.)
- Institute of Structure of Matter, National Research Council, nM-Lab, Monterotondo Scalo, 00015 Rome, Italy
| | - Davide Peddis
- Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy (D.P.)
- Institute of Structure of Matter, National Research Council, nM-Lab, Monterotondo Scalo, 00015 Rome, Italy
| | - Yevgeniy Ovchenkov
- National University of Science and Technology “MISiS”, Leninsky Pr. 4b1, 119049 Moscow, Russia (Y.O.)
- Faculty of Physics, Lomonosov Moscow State University, Kolmogorova Str. 1/2, 119234 Moscow, Russia
| | - Alexander Vasiliev
- National University of Science and Technology “MISiS”, Leninsky Pr. 4b1, 119049 Moscow, Russia (Y.O.)
| | - Kurban E. Magomedov
- REC Smart Materials and Biomedical Applications, Immanuel Kant Baltic Federal University, A. Nevskogo Str. 14, 236014 Kaliningrad, Russia; (A.O.); (K.E.M.)
- Faculty of Chemistry, Dagestan State University, M. Gadzhiev Str. 43-a, 367000 Makhachkala, Russia
| | - Valeria Rodionova
- REC Smart Materials and Biomedical Applications, Immanuel Kant Baltic Federal University, A. Nevskogo Str. 14, 236014 Kaliningrad, Russia; (A.O.); (K.E.M.)
| |
Collapse
|
8
|
Ghiorghita CA, Lazar MM, Ghimici L, Dinu MV. Self-Assembled Chitosan/Dialdehyde Carboxymethyl Cellulose Hydrogels: Preparation and Application in the Removal of Complex Fungicide Formulations from Aqueous Media. Polymers (Basel) 2023; 15:3496. [PMID: 37688121 PMCID: PMC10490195 DOI: 10.3390/polym15173496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Environmental contamination with pesticides occurs at a global scale as a result of prolonged usage and, therefore, their removal by low-cost and environmentally friendly systems is actively demanded. In this context, our study was directed to investigate the feasibility of using some self-assembled hydrogels, comprising chitosan (CS) and carboxymethylcellulose (CMC) or dialdehyde (DA)-CMC, for the removal of four complex fungicide formulations, namely Melody Compact (MC), Dithane (Dt), Curzate Manox (CM), and Cabrio®Top (CT). Porous CS/CMC and CS/DA-CMC hydrogels were prepared as discs by combining the semi-dissolution acidification sol-gel transition method with a freeze-drying approach. The obtained CS/CMC and CS/DA-CMC hydrogels were characterized by gel fraction yield, FTIR, SEM, swelling kinetics, and uniaxial compression tests. The batch-sorption studies indicated that the fungicides' removal efficiency (RE%) by the CS/CMC hydrogels was increased significantly with increasing sorbent doses reaching 94%, 93%, 66% and 48% for MC, Dt, CM and CT, respectively, at 0.2 g sorbent dose. The RE values were higher for the hydrogels prepared using DA-CMC than for those prepared using non-oxidized CMC when initial fungicide concentrations of 300 mg/L or 400 mg/L were used. Our results indicated that CS/DA-CMC hydrogels could be promising biosorbents for mitigating pesticide contamination of aqueous environments.
Collapse
Affiliation(s)
| | | | | | - Maria Valentina Dinu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania; (C.-A.G.); (M.M.L.); (L.G.)
| |
Collapse
|
9
|
Adamiak K, Sionkowska A. State of Innovation in Alginate-Based Materials. Mar Drugs 2023; 21:353. [PMID: 37367678 PMCID: PMC10302983 DOI: 10.3390/md21060353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
This review article presents past and current alginate-based materials in each application, showing the widest range of alginate's usage and development in the past and in recent years. The first segment emphasizes the unique characteristics of alginates and their origin. The second segment sets alginates according to their application based on their features and limitations. Alginate is a polysaccharide and generally occurs as water-soluble sodium alginate. It constitutes hydrophilic and anionic polysaccharides originally extracted from natural brown algae and bacteria. Due to its promising properties, such as gelling, moisture retention, and film-forming, it can be used in environmental protection, cosmetics, medicine, tissue engineering, and the food industry. The comparison of publications with alginate-based products in the field of environmental protection, medicine, food, and cosmetics in scientific articles showed that the greatest number was assigned to the environmental field (30,767) and medicine (24,279), whereas fewer publications were available in cosmetic (5692) and food industries (24,334). Data are provided from the Google Scholar database (including abstract, title, and keywords), accessed in May 2023. In this review, various materials based on alginate are described, showing detailed information on modified composites and their possible usage. Alginate's application in water remediation and its significant value are highlighted. In this study, existing knowledge is compared, and this paper concludes with its future prospects.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- WellU sp.z.o.o., Wielkopolska 280, 81-531 Gdynia, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
10
|
Barzegarzadeh M, Amini-Fazl MS, Sohrabi N. Ultrasound-assisted adsorption of chlorpyrifos from aqueous solutions using magnetic chitosan/graphene quantum dot‑iron oxide nanocomposite hydrogel beads in batch adsorption column and fixed bed. Int J Biol Macromol 2023; 242:124587. [PMID: 37100318 DOI: 10.1016/j.ijbiomac.2023.124587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Chlorpyrifos is a hazardous material that pollutes the environment and also poses risks to human health. Thus, it is necessary to remove chlorpyrifos from aqueous media. In this study, chitosan-based hydrogel beads with different content of iron oxide-graphene quantum dots were synthesized and used for the ultrasonic-assisted removal of chlorpyrifos from wastewater. The results of batch adsorption experiments showed that among the hydrogel beads-based nanocomposites, the chitosan/graphene quantum dot‑iron oxide (10) indicated a higher adsorption efficiency of about 99.997 % at optimum conditions of the response surface method. Fitting the experimental equilibrium data to different models shows that the adsorption of chlorpyrifos is well described by the Jossens, Avrami, and double exponential models. Furthermore, for the first time, the study of the ultrasonic effect on the removal performance of chlorpyrifos showed that the ultrasonic-assisted removal of chlorpyrifos significantly reduces the equilibration time. It is expected that the ultrasonic-assisted removal strategy can be a new method to develop highly efficient adsorbents for rapid removal of pollutants in wastewater. Also, the results of the fixed bed adsorption column showed that the breakthrough time and exhausting time of chitosan/graphene quantum dot‑iron oxide (10) were equal to 485 and 1099 min, respectively. And finally, the adsorption-desorption study showed the successful reuse of adsorbent for chlorpyrifos adsorption in seven runs without a significant decrease in adsorption efficiency. Therefore, it can be said that the adsorbent has a high economic and functional potential for industrial applications.
Collapse
Affiliation(s)
- Mehdi Barzegarzadeh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Negin Sohrabi
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
11
|
Bucur AI, Poienar M, Bucur RA, Mosoarca C, Banica R. Thermally induced nano-texturing of natural materials: Mytilus galloprovincialis, Mya arenaria and Cerastoderma edule exoskeletons. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-022-00297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|