1
|
Pan L, Zhou D, Wang Y. Recent advances in biosensors based on the electrochemical properties of MXenes. Analyst 2025; 150:2469-2488. [PMID: 40391469 DOI: 10.1039/d5an00235d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Biosensors have rapidly gained popularity and made significant progress in their applications in recent years, and a key strategy for the development of advanced biosensors is the utilization of novel structures with remarkable properties. The emergence of novel nanostructures will significantly improve the performance of sensors and create a new frontier for highly sensitive analysis. MXenes, as an emerging two-dimensional nanomaterial with a unique layered structure and electrochemical properties, have become an ideal material for developing high-sensitivity, high-stability, and multifunctional biosensors. In this review, we systematically summarized the synthesis and modification methods for MXenes and their current applications in biosensing, including electrochemical sensing, optical sensing, and wearable and portable sensing. Furthermore, this review offers potential solutions to address the challenges posed by MXenes in biosensor applications, specifically those related to material stability and biocompatibility. This review is believed to provide insights into the development of MXenes for biosensing, paving the way for their future translational medical applications.
Collapse
Affiliation(s)
- Luming Pan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China.
| | - Dongtao Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Vojoudi H, Soroush M. Bio-Functionalized MXenes: Synthesis and Versatile Applications. Adv Healthc Mater 2025; 14:e2500359. [PMID: 40321048 DOI: 10.1002/adhm.202500359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Indexed: 06/11/2025]
Abstract
MXenes exhibit remarkable properties, including high electrical conductivity, tunable surface chemistry, outstanding mechanical strength, and notable hydrophilicity. Recent advancements in bio-functionalization have further enhanced these intrinsic characteristics, unlocking unprecedented opportunities for MXenes across a wide spectrum of applications in both biomedical and environmental domains. This review provides an in-depth analysis of the synthesis strategies and functionalization techniques that improve MXenes' biocompatibility and expand their potential uses in cutting-edge applications, including implantable and wearable devices, drug delivery systems, cancer therapies, tissue engineering, and advanced sensing technologies. Moreover, the review explores the utility of bio-functionalized MXenes in areas such as corrosion protection, water purification, and food safety sensors, underscoring their versatility in addressing urgent global challenges. By conducting a critical evaluation of current research, this review not only highlights the immense potential of bio-functionalized MXenes but also identifies pivotal gaps in the literature, offering clear pathways for future exploration and innovation in this rapidly evolving field.
Collapse
Affiliation(s)
- Hossein Vojoudi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Solangi NH, Karri RR, Mubarak NM, Mazari SA, Sharma BP. Holistic insights into carbon nanotubes and MXenes as a promising route to bio-sensing applications. NANOSCALE 2024; 16:21216-21263. [PMID: 39470605 DOI: 10.1039/d4nr03008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Essential biosensor use has become increasingly important in drug discovery and recognition, biomedicine, food safety, security, and environmental research. It directly contributed to the development of specialized, reliable diagnostic instruments known as biosensors, which use biological sensing components. Traditional biosensors have poor performance, so scientists need to develop advanced biosensors with promising selectivity, sensitivity, stability, and reusability. These are all parameter modifications associated with the characteristics of the sensing material. Carbon nanotubes (CNTs) and MXenes are promising as targeted sensing agents in advanced functional materials because of their promising chemical and physical properties and limited toxic effects. Based on available data and sensing performance, MXene is better for biosensing applications than CNTs. Because of their large specific surface area (SSA), superior electrical conductivity, and adaptable surface chemistry that facilitates simple functionalization and robust interactions with biomolecules, MXenes are typically regarded as the superior option for biosensors. Additionally, because of their hydrophilic nature, they are more suited to biological settings, which increases their sensitivity and efficacy in identifying biological targets. MXenes are more suitable for biosensing applications due to their versatility and compatibility with aquatic environments, even if CNTs have demonstrated stability and muscular mechanical strength. However, MXenes offer better thermal stability, which is crucial for applications in diverse temperature environments. This study reviews and compares the biosensing capabilities, synthesis methods, unique properties, and toxicity of CNTs and MXenes. Both nanomaterials effectively detect various pollutants in food, biological substances, and human bodies, making them invaluable in environmental monitoring and medical diagnostics. In conclusion, CNTs work better for biosensors that must be strong, flexible, and long-lasting under different conditions. MXenes, on the other hand, work better when chemical flexibility and compatibility with wet environments are essential.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- State Key Laboratory of Chemical Resource Engineering and College of Chemistry, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, PR China
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Faculty of Engineering, INTI International University, 71800, Nilai, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan.
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Ariaeenejad S, Barani M, Roostaee M, Lohrasbi-Nejad A, Mohammadi-Nejad G, Hosseini Salekdeh G. Enhanced pollutant degradation via green-synthesized core-shell mesoporous Si@Fe magnetic nanoparticles immobilized with metagenomic laccase. Int J Biol Macromol 2024; 278:134813. [PMID: 39154675 DOI: 10.1016/j.ijbiomac.2024.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
With rapid industrial expansion, environmental pollution from emerging contaminants has increased, posing severe ecosystem threats. Laccases offer an eco-friendly solution for degrading hazardous substances, but their use as free-form biocatalysts face challenges. This study immobilized laccase (PersiLac1) on green-synthesized Si@Fe nanoparticles (MSFM NPs) to remove pollutants like Malachite Green-containing wastewater and degrade plastic films. Characterization techniques (FTIR, VSM, XRD, SEM, EDS, BET) confirmed the properties and structure of MSFM NPs, revealing a surface area of 31.297 m2.g-1 and a pore diameter of 12.267 nm. The immobilized PersiLac1 showed enhanced activity across various temperatures and pH levels, retaining over 82 % activity after 15 cycles at 80°C with minimal leaching. It demonstrated higher stability, half-life, and decimal reduction time than free laccase. Under 1 M NaCl, its activity was 1.8 times higher than the non-immobilized enzyme. The immobilized laccase removed 98.11 % of Malachite Green-containing wastewater and retained 82.92 % activity over twenty cycles of dye removal. Additionally, FTIR and SEM confirmed superior plastic degradation under saline conditions. These findings suggest that immobilizing PersiLac1 on magnetic nanoparticles enhances its function and potential for contaminant removal. Future research should focus on scalable, cost-effective laccase immobilization methods for large-scale environmental applications.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran; Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran; Institute of Plant Production (IPP), Afzalipour Research Institute (ARI), Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran; Institute of Plant Production (IPP), Afzalipour Research Institute (ARI), Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
5
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
6
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Li W, Tong J, Li G. Graphene oxide intercalated Alk-MXene adsorbents for efficient removal of Malachite green and Congo red from aqueous solutions. CHEMOSPHERE 2024; 360:142376. [PMID: 38777197 DOI: 10.1016/j.chemosphere.2024.142376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Currently, adsorbents with high adsorption performance for eliminating pollutants from discharged wastewater have received many researchers' attention. To this aim, a novel AMXGO absorbent was fabricated by intercalating graphene oxide (GO) into alkalized MXene (Alk-MXene) layer which exhibited high efficacy for the removal of cationic Malachite Green (MG) and anionic Congo Red (CR). Analysis of FTIR, XRD, SEM and TG presented that AMXGO absorbent have a typical three-dimensional layer by layer structure and abundant oxygen-containing groups and its thermal stability was remarkably improved. BET results elucidated that AMXGO1 adsorbent has larger specific surface area and pore volume (16.686 m2 g-1, 0.04733 cm3 g-1) as compared to Alk-MXene (4.729 m2 g-1, 0.02522 cm3 g-1). A dependence of adsorption performance on mass ratio between Alk-MXene and GO, initial dye concentration, contact time, temperature and pH was revealed. Maximum adsorption capacity of MG (1111.6 mg/g) and CR (1133.7 mg/g) were particularly found for AMXGO1 absorbent with a mass ratio of 3:1 and its removal for both dyes were higher than 92%. The adsorption process of AMXGO1 adsorbent for both MG and CR complies with pseudo-second-order kinetic model and Freundlich isotherm model. In addition, adsorption mechanism was explored that synergism effects as electrostatic attraction, π-π conjugates, intercalation adsorption and pore filling were the main driving force for the high adsorption performance of dye. Therefore, AMXGO adsorbent has a potential application prospect in the purification of dye wastewater.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jiawei Tong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Guangfen Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
8
|
Phiri Z, Moja NT, Nkambule TT, de Kock LA. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024; 10:e25785. [PMID: 38375270 PMCID: PMC10875440 DOI: 10.1016/j.heliyon.2024.e25785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Biochar usage for removing heavy metals from aqueous environments has emerged as a promising research area with significant environmental and economic benefits. Using the PICO approach, the research question aimed to explore using biochar to remove heavy metals from aqueous media. We merged the data from Scopus and the Web of Science Core Collection databases to acquire a comprehensive perspective of the subject. The PRISMA guidelines were applied to establish the search parameters, identify the appropriate articles, and collect the bibliographic information from the publications between 2010 and 2022. The bibliometric analysis showed that biochar-based heavy metal remediation is a research field with increasing scholarly attention. The removal of Cr(VI), Pb(II), Cd(II), and Cu(II) was the most studied among the heavy metals. We identified five main clusters centered on adsorption, water treatment, adsorption models, analytical techniques, and hydrothermal carbonization by performing keyword co-occurrence analysis. Trending topics include biochar reusability, modification, acid mine drainage (AMD), wastewater treatment, and hydrochar. The reutilization of heavy metal-loaded spent biochar includes transforming it into electrodes for supercapacitors or stable catalyst materials. This study provides a comprehensive overview of biochar-based heavy metal remediation in aquatic environments and highlights knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Nathaniel T. Moja
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Thabo T.I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
9
|
Gao D, Chen B, Sha X, Zhang Y, Chen X, Wang L, Zhang X, Zhang J, Cao Y, Wang Y, Li L, Li X, Xu S, Yu H, Cheng L. Near infrared emissions from both high efficient quantum cutting (173%) and nearly-pure-color upconversion in NaY(WO 4) 2:Er 3+/Yb 3+ with thermal management capability for silicon-based solar cells. LIGHT, SCIENCE & APPLICATIONS 2024; 13:17. [PMID: 38225231 PMCID: PMC10789824 DOI: 10.1038/s41377-023-01365-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Raising photoelectric conversion efficiency and enhancing heat management are two critical concerns for silicon-based solar cells. In this work, efficient Yb3+ infrared emissions from both quantum cutting and upconversion were demonstrated by adjusting Er3+ and Yb3+ concentrations, and thermo-manage-applicable temperature sensing based on the luminescence intensity ratio of two super-low thermal quenching levels was discovered in an Er3+/Yb3+ co-doped tungstate system. The quantum cutting mechanism was clearly decrypted as a two-step energy transfer process from Er3+ to Yb3+. The two-step energy transfer efficiencies, the radiative and nonradiative transition rates of all interested 4 f levels of Er3+ in NaY(WO4)2 were confirmed in the framework of Föster-Dexter theory, Judd-Ofelt theory, and energy gap law, and based on these obtained efficiencies and rates the quantum cutting efficiency was furthermore determined to be as high as 173% in NaY(WO4)2: 5 mol% Er3+/50 mol% Yb3+ sample. Strong and nearly pure infrared upconversion emission of Yb3+ under 1550 nm excitation was achieved in Er3+/Yb3+ co-doped NaY(WO4)2 by adjusting Yb3+ doping concentrations. The Yb3+ induced infrared upconversion emission enhancement was attributed to the efficient energy transfer 4I11/2 (Er3+) + 2F7/2 (Yb3+) → 4I15/2 (Er3+) + 2F5/2 (Yb3+) and large nonradiative relaxation rate of 4I9/2. Analysis on the temperature sensing indicated that the NaY(WO4)2:Er3+/Yb3+ serves well the solar cells as thermos-managing material. Moreover, it was confirmed that the fluorescence thermal quenching of 2H11/2/4S3/2 was caused by the nonradiative relaxation of 4S3/2. All the obtained results suggest that NaY(WO4)2:Er3+/Yb3+ is an excellent material for silicon-based solar cells to improve photoelectric conversion efficiency and thermal management.
Collapse
Affiliation(s)
- Duan Gao
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Baojiu Chen
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| | - Xuezhu Sha
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yuhang Zhang
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Xin Chen
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Li Wang
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Xizhen Zhang
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Jinsu Zhang
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yongze Cao
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yichao Wang
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Lei Li
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Xiangping Li
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Hongquan Yu
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Lihong Cheng
- School of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| |
Collapse
|
10
|
Huang L, Ding L, Caro J, Wang H. MXene-based Membranes for Drinking Water Production. Angew Chem Int Ed Engl 2023; 62:e202311138. [PMID: 37615530 DOI: 10.1002/anie.202311138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
The soaring development of industry exacerbates the shortage of fresh water, making drinking water production an urgent demand. Membrane techniques feature the merits of high efficiency, low energy consumption, and easy operation, deemed as the most potential technology to purify water. Recently, a new type of two-dimensional materials, MXenes as the transition metal carbides or nitrides in the shape of nanosheets, have attracted enormous interest in water purification due to their extraordinary properties such as adjustable hydrophilicity, easy processibility, antifouling resistance, mechanical strength, and light-to-heat transformation capability. In pioneering studies, MXene-based membranes have been evaluated in the past decade for drinking water production including the separation of bacteria, dyes, salts, and heavy metals. This review focuses on the recent advancement of MXene-based membranes for drinking water production. A brief introduction of MXenes is given first, followed by descriptions of their unique properties. Then, the preparation methods of MXene membranes are summarized. The various applications of MXene membranes in water treatment and the corresponding separation mechanisms are discussed in detail. Finally, the challenges and prospects of MXene membranes are presented with the hope to provide insightful guidance on the future design and fabrication of high-performance MXene membranes.
Collapse
Affiliation(s)
- Lingzhi Huang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Ding
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3A, 30167, Hannover, Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Saroa A, Singh A, Jindal N, Kumar R, Singh K, Guleria P, Boopathy R, Kumar V. Nanotechnology-assisted treatment of pharmaceuticals contaminated water. Bioengineered 2023; 14:2260919. [PMID: 37750751 PMCID: PMC10524801 DOI: 10.1080/21655979.2023.2260919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
The presence of pharmaceutical compounds in wastewater due to an increase in industrialization and urbanization is a serious health concern. The demand for diverse types of pharmaceutical compounds is expected to grow as there is continuous improvement in the global human health standards. Discharge of domestic pharmaceutical personal care products and hospital waste has aggravated the burden on wastewater management. Further, the pharmaceutical water is toxic not only to the aquatic organism but also to terrestrial animals coming in contact directly or indirectly. The pharmaceutical wastes can be removed by adsorption and/or degradation approach. Nanoparticles (NPs), such as 2D layers materials, metal-organic frameworks (MOFs), and carbonaceous nanomaterials are proven to be more efficient for adsorption and/or degradation of pharmaceutical waste. In addition, inclusion of NPs to form various composites leads to improvement in the waste treatment efficacy to a greater extent. Overall, carbonaceous nanocomposites have advantage in the form of being produced from renewable resources and the nanocomposite material is biodegradable either completely or to a great extent. A comprehensive literature survey on the recent advancement of pharmaceutical wastewater is the focus of the present article.
Collapse
Affiliation(s)
- Amandeep Saroa
- Department of Chemistry, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, India
| | - Amrit Singh
- Department of Physics, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, India
| | - Neha Jindal
- Department of Chemistry, DAV College, Bathinda, India
| | - Raj Kumar
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, India
| | | | - Praveen Guleria
- Department of Biotechnology, DAV University, Jalandhar, India
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Wang Y, Zhong S, Niu Z, Dai Y, Li J. Synthesis and up-to-date applications of 2D microporous g-C 3N 4 nanomaterials for sustainable development. Chem Commun (Camb) 2023; 59:10883-10911. [PMID: 37622731 DOI: 10.1039/d3cc03550f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
In recent years, with the development of industrial technology and the increase of people's environmental awareness, the research on sustainable materials and their applications has become a hot topic. Among two-dimensional (2D) materials that have been selected for sustainable research, graphitic phase carbon nitride (g-C3N4) has become a hot research topic because of its many outstanding advantages such as simple preparation, good electrochemical properties, excellent photochemical properties, and better thermal stability. Nevertheless, the inherent limitations of g-C3N4 due to its relatively poor specific surface area, rapid charge recombination, limited light absorption range, and inferior dispersion in aqueous and organic media have limited its practical application. In the review, we summarize and analyze the unique structure of the 2D microporous nanomaterial g-C3N4, its synthesis method, chemical modification method, and the latest application examples in various fields in recent years, highlighting its advantages and shortcomings, with a view to providing ideas for overcoming the difficulties in its application. Furthermore, the pressing challenges faced by g-C3N4 are briefly discussed, as well as an outlook on the application prospects of g-C3N4 materials. It is expected that the review in this paper will provide more theoretical strategies for the future practical application of g-C3N4-based materials, as well as contributing to nanomaterials in sustainable applications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Suyue Zhong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Zhenhua Niu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yangyang Dai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
13
|
Khdary NH, Almuarqab BT, El Enany G. Nanoparticle-Embedded Polymers and Their Applications: A Review. MEMBRANES 2023; 13:537. [PMID: 37233597 PMCID: PMC10220572 DOI: 10.3390/membranes13050537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
There has been increasing interest in the study and development of nanoparticle-embedded polymeric materials and their applications to special membranes. Nanoparticle-embedded polymeric materials have been observed to have a desirable compatibility with commonly used membrane matrices, a wide range of functionalities, and tunable physicochemical properties. The development of nanoparticle-embedded polymeric materials has shown great potential to overcome the longstanding challenges faced by the membrane separation industry. One major challenge that has been a bottleneck to the progress and use of membranes is the balance between the selectivity and the permeability of the membranes. Recent developments in the fabrication of nanoparticle-embedded polymeric materials have focused on how to further tune the properties of the nanoparticles and membranes to improve the performance of the membranes even further. Techniques for improving the performance of nanoparticle-embedded membranes by exploiting their surface characteristics and internal pore and channel structures to a significant degree have been incorporated into the fabrication processes. Several fabrication techniques are discussed in this paper and used to produce both mixed-matrix membranes and homogenous nanoparticle-embedded polymeric materials. The discussed fabrication techniques include interfacial polymerization, self-assembly, surface coating, and phase inversion. With the current interest shown in the field of nanoparticle-embedded polymeric materials, it is expected that better-performing membranes will be developed soon.
Collapse
Affiliation(s)
- Nezar H. Khdary
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Basha T. Almuarqab
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Gaber El Enany
- Department of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia;
| |
Collapse
|