1
|
Das D, Bhan C, Mukherjee C, Golder AK. Improved selectivity of electrochemical aniline sensing using one-dimensional silver nanorods with high aspect ratio synthesized by ascorbic acid assisted method. Anal Chim Acta 2024; 1310:342697. [PMID: 38811140 DOI: 10.1016/j.aca.2024.342697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Aniline serves as a pivotal precursor in many industries such as pesticides, pharmaceuticals, and chemicals. However, its ingestion can lead to severe health consequences, including the potential to induce cancer, respiratory tract irritation, and adverse effects on the nervous and digestive systems in the human body. The widespread use of aniline in industrial processes, coupled with inadequate wastewater management that allows for the direct release of aniline into the environment, leads to surface and groundwater contamination. Therefore, it becomes crucial to devise a reliable electrochemical sensor capable of detecting even trace amounts of aniline. RESULTS This study presents a modified polyol synthesis method for producing silver nanorods (AgNRs, length: 861-1345 nm, diameter: 66-107 nm) with preferential growth along the (111) crystal plane. Immobilizing AgNRs on a glassy carbon (GC) electrode with Nafion as a binder decreases its charge transfer resistance from 3040 to 129 kΩ and increases its electroactive area from 0.034 to 0.101 cm2. AgNRs/GC electrode exhibited an aniline detection limit of 0.032 μM and sensitivity of 1.4841 μA.M-1cm-2 within a linear range of 0-10 μM using square wave voltammetry (SWV). The reaction rate constant of aniline sensing was determined to be 0.08697 s-1. Chlorobenzene, acephate, and chlorpyrifos could not interfere aniline detection, and 26 % decrease in peak response was observed after the 10th cycle of aniline sensing. The sensor demonstrated ∼100 % recovery for aniline, comparable to the performance of high-performance liquid chromatography when applied to real-world samples like tap and river water. SIGNIFICANCE The electrochemical sensing of aniline is notably efficient in tap and river water within the acceptable limit, by utilizing one dimensional AgNRs functionalized GC electrode. Importantly, the presence of interferents does not compromise the sensitivity of the sensor. Therefore, one dimensional AgNRs synthesized via a modified polyol route emerge as a promising electrocatalyst for the in-situ detection and determination of aniline.
Collapse
Affiliation(s)
- Daisy Das
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chandra Bhan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chandan Mukherjee
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India; Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Animes Kumar Golder
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Ma Y, Mao C, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Insight into the application of magnetic molecularly imprinted polymers in soil-washing effluent: Selective removal of 4,4'-dibromodiphenyl ether, high adaptivity of material and efficient recovery of eluent. CHEMOSPHERE 2023; 334:138990. [PMID: 37209856 DOI: 10.1016/j.chemosphere.2023.138990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Soil washing techniques can effectively remove soil polybrominated diphenyl ethers (PBDEs), but further removal of PBDEs from washing effluent is disrupted by environmental factors and coexisting organic matter. Hence, this work prepared novel magnetic molecularly imprinted polymers (MMIPs) to selectively remove PBDEs in soil washing effluent and recycling surfactants, with Fe3O4 nanoparticles as the magnetic core, methacrylic acid (MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Later, the prepared MMIPs were applied to adsorb 4,4'-dibromodiphenyl ether (BDE-15) in Triton X-100 soil-washing effluent and characterized by scanning electron microscopy (SEM), infrared spectrometry (FT-IR), nitrogen adsorption and desorption experiments. According to our observations, BDE-15 equilibrium adsorptions on dummy-template magnetic molecularly imprinted adsorbent (D-MMIP, 4-bromo-4'-hydroxyl biphenyl as template) and part-template magnetic molecularly imprinted adsorbent (P-MMIP, toluene as template) were reached within 40 min, and their equilibrium adsorption capacities were 164.54 μmol/g and 145.55 μmol/g, respectively, with imprinted factor α > 2.03, selectivity factor β > 2.14, and selectivity S > 18.05. MMIPs exhibited good adaptability to pH, temperature, and cosolvent. Our Triton X-100 recovery rate reached as high as 99.9%, and MMIPs maintained a more than 95% adsorption capacity after being recycled five times. Our results offer a novel approach to selectively remove PBDEs in soil-washing effluent, with efficient recovery of surfactants and adsorbents in soil-washing effluent.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; China National Research Center of Testing Techniques for Building Material, China Building Materials Academy, Beijing, 100024, China
| | - Changyu Mao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|