1
|
Hosseinpour Moghaddam M, Karimian N, Johnston SG, Choppala G, Rastegari M, Burton ED. Antimony(V) sorption and coprecipitation with ferrihydrite: An examination of retention mechanisms and the selectivity of commonly-applied extraction procedures. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136297. [PMID: 39490164 DOI: 10.1016/j.jhazmat.2024.136297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
We investigated the mechanisms that control Sb(V) sorption and coprecipitation with ferrihydrite across a range of Sb(V) loadings, and examined the associated effects on Sb(V) extractability during the commonly-applied 1 M HCl extraction scheme and the BCR and Wenzel sequential extraction schemes. EXAFS spectroscopy reveals that Sb(V) sorption and coprecipitation mainly involved Sb(V) incorporation into the ferrihydrite structure via edge sharing and double-corner sharing between SbO6 and FeO6 octahedra. Large amounts of these linkages partially stabilized ferrihydrite against extraction with 1 M HCl. Negligible (< 0.5 %) ferrihydrite-bound Sb(V) was recovered in the "acid extractable" and "reducible" fractions of the BCR scheme, while 1-16 % was recovered in the "oxidizable" fraction. As such, the BCR scheme risks ferrihydrite-bound Sb(V) being misidentified as Sb residing mainly in "residual" phases. In contrast, in the Wenzel scheme, almost all sorbed- and coprecipitated-Sb(V) was recovered in the "amorphous hydrous oxide-bound" fraction, with only 0.6-3.3 % in the "specifically-bound" fraction (consistent with our finding of Sb(V) retention via incorporation into ferrihydrite, as opposed to adsorption by the ferrihydrite surface). Collectively, the results provide new insights into the retention mechanisms and extraction behaviour of ferrihydrite-bound Sb(V), enhancing our ability to assess Sb contamination in soils, sediments and geogenic wastes.
Collapse
Affiliation(s)
| | - Niloofar Karimian
- School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia; CSIRO Mineral Resources, Clayton South, VIC 3169, Australia
| | - Scott G Johnston
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Rastegari
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.
| |
Collapse
|
2
|
Barquero JI, Lorenzo S, Rivera S, González-Valoys AC, García-Ordiales E, Esbrí JM, Higueras P. Biogeochemical prospecting of metallic critical raw materials: soil to plant transfer in SW Ciudad Real Province, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29536-29548. [PMID: 38580874 PMCID: PMC11058908 DOI: 10.1007/s11356-024-33097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
The soil-plant transfer of trace elements is a complex system in which many factors are involved such as the availability and bioavailability of elements in the soil, climate, pedological parameters, and the essential or toxic character of the elements. The present study proposes the evaluation of the use of multielement contents in vascular plants for prospecting ore deposits of trace elements of strategic interest for Europe. To accomplish this general goal, a study of the soil-plant transfer of major and trace elements using Quercus ilex as a study plant has been developed in the context of two geological domains with very different characteristics in geological terms and in the presence of ore deposits: the Almadén syncline for Hg and the Guadalmez syncline for Sb. The results have made it possible to differentiate geological domains not only in terms of individual elements, but also as a combination of major and trace elements using Factor Analysis. The bioconcentration factors have demonstrated the uptake of macronutrients and micronutrients in very high concentrations but these were barely dependent, or even independent of the concentrations in the soil, in addition to high values of this factor for Sb. The Factor Analysis allowed for the differentiation of geogenic elements from other linked to stibnite ore deposits (Sb, S, and Cu). This element (Sb) can be uptake by Quercus ilex via the root and from there translocating it to the leaves, showing a direct relation between concentrations in soil and plants. This finding opens the possibility of using Quercus ilex leaves for biogeochemical prospecting of geological domains or lithological types of interest to prospect for Sb deposits.
Collapse
Affiliation(s)
- José Ignacio Barquero
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
- Escuela de Ingeniería Minera E Industrial de Almadén, 13400, Almadén, Ciudad Real, Spain
| | - Saturnino Lorenzo
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
- Escuela de Ingeniería Minera E Industrial de Almadén, 13400, Almadén, Ciudad Real, Spain
| | - Sofía Rivera
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
- IES Maestro Juan de Ávila, Ronda de Calatrava 1, Ciudad Real, Spain
| | - Ana C González-Valoys
- Facultad de Ingeniería Civil, Universidad Tecnológica de Panamá, Ricardo J. Alfaro Avenue, Dr. Víctor Levi Sasso University Campus, 0819-07289, Panamá City, Panamá
| | - Efrén García-Ordiales
- ISYMAResearch Group, Mining, Energy and Materials Engineering School, University of Oviedo, C/ Independencia 13, 33011, Oviedo, Spain
| | - José María Esbrí
- Departamento de Mineralogía y Petrología, Universidad Complutense de Madrid, Antonio Novais 12, 28040, Madrid, Spain.
| | - Pablo Higueras
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
- Escuela de Ingeniería Minera E Industrial de Almadén, 13400, Almadén, Ciudad Real, Spain
| |
Collapse
|
3
|
Peco JD, Thouin H, Esbrí JM, Campos-Rodríguez HR, García-Noguero EM, Breeze D, Villena J, Gloaguen E, Higueras PL, Battaglia-Brunet F. Mobility of antimony in contrasting surface environments of a mine site: influence of redox conditions and microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105808-105828. [PMID: 37721674 DOI: 10.1007/s11356-023-29734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
Microbial processes can influence the complex geochemical behaviour of the toxic metalloid antimony (Sb) in mining environments. The present study is aimed to evaluate the influence of microbial communities on the mobility of Sb from solid phases to water in different compartments and redox conditions of a mining site in southwest (SW) Spain. Samples of surface materials presenting high Sb concentrations, from two weathered mining waste dumps, and an aquatic sediment were incubated in slurries comparing oxic and anoxic conditions. The initial microbial communities of the three materials strongly differed. Incubations induced an increase of microbial biomass and an evolution of the microbial communities' structures and compositions, which diverged in different redox conditions. The presence of active bacteria always influenced the mobility of Sb, except in the neutral pH waste incubated in oxic conditions. The effect of active microbial activities in oxic conditions was dependent on the material: Sb oxic release was biologically amplified with the acidic waste, but attenuated with the sediment. Different bacterial genera involved in Sb, Fe and S oxidation or reduction were present and/or grew during incubation of each material. The results highlighted the wide diversity of microbial communities and metabolisms at the small geographic scale of a mining site and their strong implication in Sb mobility.
Collapse
Affiliation(s)
- Jesús Daniel Peco
- Instituto de Geología Aplicada, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza Manuel Meca, Ciudad Real, 13400, Almadén, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos de Ciudad Real, Universidad de Castilla-La Mancha, Ronda de Calatrava 7, 13071, Ciudad Real, Spain
| | - Hugues Thouin
- BRGM, 3 Av. Claude Guillemin, 45060, Orléans, France
| | - José María Esbrí
- Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Eva Maria García-Noguero
- Instituto de Geología Aplicada, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza Manuel Meca, Ciudad Real, 13400, Almadén, Spain
| | | | - Jaime Villena
- Escuela Técnica Superior de Ingenieros Agrónomos de Ciudad Real, Universidad de Castilla-La Mancha, Ronda de Calatrava 7, 13071, Ciudad Real, Spain
| | - Eric Gloaguen
- CNRS, BRGM, ISTO, UMR 7327, Université d'Orléans, 45071, Orléans, France
| | - Pablo Leon Higueras
- Instituto de Geología Aplicada, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza Manuel Meca, Ciudad Real, 13400, Almadén, Spain
| | | |
Collapse
|