1
|
Namakka M, Rahman MR, Bin Mohamad Said KA, Muhammad A. Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Adv 2024; 14:30411-30439. [PMID: 39318464 PMCID: PMC11420651 DOI: 10.1039/d4ra03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The growing threat of environmental pollution to global environmental health necessitates a focus on the search for sustainable wastewater remediation materials coupled with innovative remediation strategies. Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron (ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as a powerful tool for environmental remediation. This analysis contributes to the ongoing search of effective solutions for environmental remediation. Synthesis techniques are analysed based on their efficacy, scalability, and environmental impact, providing insights into existing methodologies, current challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical properties and multifunctional engineering applications, including their role in wastewater and soil remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial applications of these materials are also discussed, accenting the importance of understanding the synthesis methods, materials' applications and their impacts on humans and the environment. The review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
Collapse
Affiliation(s)
- Murtala Namakka
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
- Ahmadu Bello University Zaria Kaduna state Nigeria
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Khairul Anwar Bin Mohamad Said
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Adamu Muhammad
- Nigerian National Petroleum Corporation Limited, NNPCl Nigeria
| |
Collapse
|
2
|
Xu Y, Chen J. Activity and recyclability enhancement of pH-dependent Fe 0@BC-mediated heterogeneous sodium percarbonate (SPC)-reducing agents (RA) system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120596. [PMID: 38520858 DOI: 10.1016/j.jenvman.2024.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Dyes pose great threats to the aquatic environment and human health. Fe0-based Fenton-like systems have been widely employed for the degradation of organic dyes. However, the regulation of degradability and recyclability was still unclear. In this study, Rhodamine B (RhB) was served as the model pollutant, hydroxylamine hydrochloride was selected as the RA, the natural photocatalysis system demonstrated stable operation. RA, as performance enhancement agent, was firstly reported in micro/nano-Zero-Valent Iron@Biochar (m/nZVI@BC) based SPC-RA system. Carrier size-fractionated m/nZVI@BC was fabricated by one-step carbothermal method. As a result, RA synergistically interacted with SPC, and the reaction time reduced from 15 min to 4 min. In the 0.010 g m/nZVI@BC-mediated SPC-RA system, over 95% of RhB (100 mg·L-1, 1041.667 mg·g-1) was successfully degraded. The maximum degradation ability could still exceed 1g·g-1 via 5 times repeated applications. Meanwhile, the loss of degradability, caused by halving SPC concentration could be compensated by RA dosage measurement. The entire degradation process was predominantly dominated by free radicals (•OH> 1O2> •O2-> •CO3-). Reactive oxidizing species (ROSs) were primarily excited by α-Fe0, Fe3C and N sites of biochar (BC). Light and BC carrier dedicated slight influence. These discoveries shed a light on the activity and recyclability regulation of catalytic material, aligning with the principles of green chemistry and cleaner production. This study demonstrates a novel approach to efficient management of solid waste disposal, reuse of waste biomass, advanced treatment of dye-containing wastewater, pollution control in aquatic environments.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
3
|
Zhang R, Zhu Y, Dong J, Yao Z, Zeng G, Sheng X, Xu Z, Lyu S. Fluoranthene degradation in a persulfate system activated by sulfidated nano zero-valent iron (S-nZVI): performance and mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:225-240. [PMID: 39219127 PMCID: wst_2024_007 DOI: 10.2166/wst.2024.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fluoranthene (FLT) has received mounting focus due to its hazardous properties and frequent occurrence in groundwater. In this study, sulfidated nano zero-valent iron (S-nZVI) was selected as an efficient catalyst for activating persulfate (PS) to degrade FLT. The effects of reagent doses, various water conditions (pH, anions, and humic acid), and the presence of surfactants on FLT degradation were investigated. Radical probe experiments, electron paramagnetic resonance (EPR) spectrum detection, and scavenging tests were performed to identify the major reactive oxygen species (ROS) in the system. The results showed that in the PS/S-nZVI system, 96.2% of FLT was removed within 120 min at the optimal dose of PS = 0.07 mM and S-nZVI = 0.0072 g L-1. S(-II) in the S-nZVI surface layer promoted Fe(II) regeneration. Furthermore, HO• and SO4-• were identified as the main contributors to FLT degradation. The intermediates of FLT degradation were detected by gas chromatograph-mass spectrometry (GC-MS) and a possible FLT degradation pathway was proposed. Finally, the effective degradation of two other common polycyclic aromatic hydrocarbons (PAHs) (naphthalene and phenanthrene) demonstrated the broad-spectrum reactivity of the PS/S-nZVI process. In conclusion, these findings strongly demonstrate that the PS/S-nZVI process is a promising alternative for the remediation of PAH-contaminated groundwater.
Collapse
Affiliation(s)
- Ruzhuang Zhang
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China E-mail:
| | - Yi Zhu
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China
| | - Jiaqi Dong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhennan Yao
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China
| | - Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Ziqian Xu
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., LTD, Shanghai 200331, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Yang G, Jiang Y, Yin B, Liu G, Ma D, Zhang G, Zhang G, Xin Y, Chen Q. Efficiency and mechanism on photocatalytic degradation of fluoranthene in soil by Z-scheme g-C 3N 4/α-Fe 2O 3 photocatalyst under simulated sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27334-1. [PMID: 37147542 DOI: 10.1007/s11356-023-27334-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil have potential harm on human health. However, remediation of PAH-contaminated soils through photocatalytic technology remains a challenge. Therefore, the photocatalyst g-C3N4/α-Fe2O3 was synthesized and applied to photocatalytic degradation of fluoranthene in soil. The physicochemical properties of g-C3N4/α-Fe2O3 and various degradation parameters, such as catalyst dosage, the ratio of water/soil, and initial pH, were investigated in detail. In soil slurry reaction system (water/soil=10:1, w/w), the optimal degradation efficiency on fluoranthene was 88.7% after simulated sunlight irradiation for 12 h (contaminated soil=2 g, initial fluoranthene concentration=36 mg/kg, catalyst dosage=5%, and pH=6.8), and the photocatalytic degradation followed pseudo-first-order kinetics. The degradation efficiency of g-C3N4/α-Fe2O3 was higher compared with P25. Degradation mechanism analysis showed that •O2- and h+ are the main active species in photocatalytic degradation process of fluoranthene by g-C3N4/α-Fe2O3. Coupling g-C3N4 and α-Fe2O3 enhances the interfacial charge transport capacity via Z-scheme charge transfer route and inhibits the recombination of photogenerated electrons and holes of g-C3N4 and α-Fe2O3, then significantly improves the production of active species and photocatalytic activity. Results showed that photocatalytic treatment of soil by g-C3N4/α-Fe2O3 is an effective strategy for remediation of soils contaminated by PAHs.
Collapse
Affiliation(s)
- Guoliang Yang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yan Jiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Bingjie Yin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guocheng Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Dong Ma
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yanjun Xin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China.
| |
Collapse
|