1
|
Khiem TC, Huy NN, Trang TD, Wen JC, Kwon E, Chang HC, Hu C, Duan X, Lin KYA. Boosting elimination of sunscreen, Tetrahydroxybenzophenone (BP-2), from water using monopersulfate activated by thorny NanoBox of Co@C prepared via the engineered etching strategy: A comparative and mechanistic investigation. CHEMOSPHERE 2023; 327:138469. [PMID: 36963579 DOI: 10.1016/j.chemosphere.2023.138469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
As sunscreens, benzophenones (BPs), are regarded as emerging contaminants, most of studies are focused on removal of 2-hydroxy-4-methoxybenzophenone (BP-3), which, however, has been employed for protecting skin. Another major class of BPs, which is used to prevent UV-induce degradation in various products, is completely neglected. Thus, this present study aims to develop a useful advanced oxidation process (AOP) for the first time to eliminate such a class of BP sunscreens from contaminated water. Specifically, 2,2',4,4'-Tetrahydroxybenzophenone (BP-2) would be focused here as BP-2 is intensively used in perfumes, lipsticks, and plastics for preventing the UV-induced degradation. As monopersulfate (MPS)-based AOP is practical for degrading emerging contaminants, a facile nanostructured cobalt-based material is then developed for maximizing catalytic activities of MPS activation by immobilizing Co nanoparticles onto carbon substrates. In particular, ZIF-67 is employed as a template, followed by the etching and carbonization treatments to afford the thorny nanobox of Co@C (TNBCC) with the hollow-nanostructure. In comparison to the solid (non-hollow) nanocube of Co@C (NCCC) from the direct carbonization of ZIF-67, TNBCC possesses not only the excellent textural features, but also superior electrochemical properties and highly reactive surfaces, making TNBCC exhibit the significantly higher catalytic activity than NCCC as well as Co3O4 in activating MPS to degrade BP-2. Mechanisms of BP-2 degradation are also elucidated and ascribed to both radical and non-radical routes. These advantageous features make TNBCC a useful catalyst of activating MPS in BP-2 degradation.
Collapse
Affiliation(s)
- Ta Cong Khiem
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Tran Doan Trang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jet-Chau Wen
- National Yunlin University of Science and Technology, Douliu, Yunlin County, Taiwan
| | - Eilhann Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, SeongDong-Gu, Seoul, Republic of Korea
| | - Hou-Chien Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chechia Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Da'an Dist., Taipei City, 106, Taiwan.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA, 5005, Australia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
2
|
Janjić GV, Marinović SR, Jadranin MB, Ajduković MJ, Đorđević IS, Petković-Benazzouz MM, Milutinović-Nikolić AD. Degradation of tartrazine by Oxone® in the presence of cobalt based catalyst supported on pillared montmorillonite - Efficient technology even in extreme conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121863. [PMID: 37225074 DOI: 10.1016/j.envpol.2023.121863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
The catalytic degradation of hazardous organic contaminants in industrial wastewater is a promising technology. Reactions of tartrazine, the synthetic yellow azo dye, with Oxone® in the presence of catalyst in strong acidic condition (pH 2), were detected by using UV-Vis spectroscopy. In order to extend the applicability profile of Co-supported Al-pillared montmorillonite catalyst an investigation of Oxone® induced reactions were performed in extreme acidic environment. The products of the reactions were identified by liquid chromatography-mass spectrometry (LC-MS). Along with the catalytic decomposition of tartrazine induced by radical attack (confirmed as unique reaction path under neutral and alkaline conditions), the formation of tartrazine derivatives by reaction of nucleophilic addition was also detected. The presence of derivatives under acidic conditions slowed down the hydrolysis of tartrazine diazo bond in comparison to the reactions in neutral environment. Nevertheless, the reaction in acidic conditions (pH 2) is faster than the one conducted in alkaline conditions (pH 11). Theoretical calculations were used to complete and clarify the mechanisms of tartrazine derivatization and degradation, as well as to predict the UV-Vis spectra of compounds which could serve as predictors of certain reaction phases. ECOSAR program, used to estimate toxicological profile of compounds to aquatic animals, indicated an increase in the harmfulness of the compounds identified by LC-MS as degradation products from the reaction conducted for 240min. It could be concluded that an intensification of the process parameters (higher concentration of Oxone®, higher catalyst loading, increased reaction time, etc.) is needed in order to obtain only biodegradable products.
Collapse
Affiliation(s)
- Goran V Janjić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Sanja R Marinović
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Milka B Jadranin
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Marija J Ajduković
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Ivana S Đorđević
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | | | | |
Collapse
|
3
|
Li S, Yang L, Wu J, Yao L, Han D, Liang Y, Yin Y, Hu L, Shi J, Jiang G. Efficient and selective removal of Hg(II) from water using recyclable hierarchical MoS 2/Fe 3O 4 nanocomposites. WATER RESEARCH 2023; 235:119896. [PMID: 36965293 DOI: 10.1016/j.watres.2023.119896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Developing practical and cost-effective adsorbents with satisfactory mercury (Hg) remediation capability is indispensable for aquatic environment safety and public health. Herein, a recyclable hierarchical MoS2/Fe3O4 nanocomposite (by in-situ growth of MoS2 nanosheets on the surface of Fe3O4 nanospheres) is presented for the selective removal of Hg(II) from aquatic samples. It exhibited high adsorption capacity (∼1923.5 mg g -1), fast kinetics (k2 ∼ 0.56 mg g -1 min-1), broad working pH range (2-11), excellent selectivity (Kd > 1.0 × 107 mL g -1), and great reusability (removal efficiency > 90% after 20 cycles). In particular, removal efficiencies of up to ∼97% for different Hg(II) concentrations (10-1000 μg L -1) in natural water and industrial effluents confirmed the practicability of MoS2/Fe3O4. The possible mechanism for effective Hg(II) removal was discussed by a series of characterization analyses, which was attributed to the alteration of the MoS2 structure and the surface coordination of Hg-S. The accessibility of surface sulfur sites and the diffusion of Hg(II) in the solid-liquid system were enhanced due to the advantage of the expanded interlayer spacing (0.96 nm) and the hierarchical structure. This study suggests that MoS2/Fe3O4 is a promising material for Hg(II) removal in actual scenarios and provides a feasible approach by rationally constructing hierarchical structures to promote the practical applications of MoS2 in sustainable water treatments.
Collapse
Affiliation(s)
- Shiyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialong Wu
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Deming Han
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|