1
|
Liu W, Su X, Wu Y, Yi G, Guo X, Shi S, Zhang C, Zhang Y. A comprehensive review of PbO 2 electrodes in electrocatalytic degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2025; 279:121885. [PMID: 40383422 DOI: 10.1016/j.envres.2025.121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
This paper provides a systematic review of recent advancements in PbO2 electrodes for the electrocatalytic degradation of organic pollutants, emphasizing innovative breakthroughs and key technological optimizations in this domain. This work analyzes PbO2 electrode fabrication methods, assessing strengths/weaknesses, and summarizes recent advances in surface modification. Atomic-scale strategies such as elemental doping, composite oxides, and nanomaterial coupling, enhance its catalytic performance. Kinetic modeling and characterization confirm the improved efficiency and durability in organic contaminant mineralization. Kinetic and experimental analyses demonstrate the high efficiency and stability of modified PbO2 electrodes in degrading organic pollutants. Industrial feasibility analysis indicates that the PbO2 electrode demonstrates technical robustness, economic viability, and scalability for industrial implementation. This work elucidates direct/indirect oxidation mechanisms in electrocatalysis, revealing correlations between surface reactive sites and active oxidant generation, guiding electrode design optimization. Looking ahead, this paper proposes innovative trajectories for PbO2 electrode technology, such as exploring novel modified materials, intelligently designing hierarchical architectures, and integrating advanced systems with smart control. These directions aim to promote its widespread use in environmental protection for more efficient and eco-friendly organic pollutant treatment. This review enriches the theoretical framework for PbO2 electrode electrocatalytic degradation of organic contaminants and offers references and inspirations for future research.
Collapse
Affiliation(s)
- Wenlong Liu
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xiaoxiao Su
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yuanfeng Wu
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Guiyun Yi
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xiangkun Guo
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Shengbin Shi
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yulong Zhang
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| |
Collapse
|
2
|
Waly SM, El-Wakil AM, Waly MM, El-Maaty WMA, Awad FS. Enhanced removal of indigo carmine dye from aqueous solutions using polyaniline modified partially reduced graphene oxide composite. Sci Rep 2025; 15:15555. [PMID: 40319116 PMCID: PMC12049445 DOI: 10.1038/s41598-025-98115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
In this study, graphene oxide (GO) nanosheets were chemically modified by attaching polyaniline (PAN) nanoparticles to their surfaces, creating a polyaniline partially reduced graphene oxide composite (PAN@PRGO). This synthesized PAN@PRGO nanocomposite serves as an innovative and highly effective adsorbent for removing indigo carmine (IC) dye from water. The morphology and chemical composition of PAN@PRGO were analyzed using various techniques, including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), confirming the successful grafting of PAN onto the GO surface. Batch adsorption tests showed that PAN@PRGO has an outstanding adsorption capacity for indigo carmine (IC) dye, achieving 490.0 mg g-1 at pH 5.0 and 298 K. This is notably higher than the adsorption capacity of GO nanosheets alone (317.25 mg g-1) and exceeds that of other materials reported in the literature. Additionally, PAN@PRGO demonstrated 100% removal efficiency for IC dye at concentrations up to 300 mg L-1. The experimental data closely matched the Langmuir isotherm model and the pseudo-second-order kinetic model, suggesting that electron-sharing interactions between IC dye and PAN@PRGO contribute to the adsorption mechanism. The adsorbed IC dye was recoverable using a 0.1 M NaOH solution, with the composite retaining near-100% efficiency even after five adsorption-desorption cycles. These results indicate that the PAN@PRGO composite is a promising, reusable adsorbent for effective IC dye removal from industrial wastewater.
Collapse
Affiliation(s)
- Saadia M Waly
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmad M El-Wakil
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed M Waly
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura, 35712, Egypt
| | - Weam M Abou El-Maaty
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura, 35712, Egypt.
| |
Collapse
|
3
|
Luo Z, Huang W, Yu W, Tang S, Wei K, Yu Y, Xu L, Yin H, Niu J. Insights into electrochemical oxidation of tris(2-butoxyethyl) phosphate (TBOEP) in aquatic media: Degradation performance, mechanisms and toxicity changes of intermediate products. CHEMOSPHERE 2023; 343:140267. [PMID: 37758090 DOI: 10.1016/j.chemosphere.2023.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.
Collapse
Affiliation(s)
- Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kun Wei
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuanyuan Yu
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
4
|
Nguyen Tien H, Mwazighe F. Preparation of Ti/SnO 2-Sb/La-βPbO 2 electrode and its application in the degradation of some pollutants including prednisolone and 8-Hydroxyquinoline. CHEMOSPHERE 2023; 333:138933. [PMID: 37187380 DOI: 10.1016/j.chemosphere.2023.138933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
In this work, a novel La-doped βPbO2 (Ti/SnO2-Sb/La-βPbO2) was prepared using electrodeposition method and applied to the degradation of prednisolone (PRD), 8-Hydroxyquinoline (8-HQ), and other typical organic pollutants. Compared with the conventional electrode Ti/SnO2-Sb/βPbO2, La2O3 doping enhanced oxygen evolution potential (OEP), reactive surface area, stability and repeatability of the electrode. The 10 g L-1 of La2O3 doping exhibited the highest electrochemical oxidation capability of the electrode with [•OH]ss being determined at 5.6 × 10-13 M. The quenching experiments were conducted to confirm the main oxidizing species (here: •OH) in the electrochemical process. The study showed that the pollutants were removed in the electrochemical (EC) process with different degradation rates and indicated that the second-order rate constant of organic pollutants towards •OH (kOP,•OH) has a linear relationship with the degradation rate of organic pollutants (kOP) in the electrochemical process. Another new finding in this work is that a regression line of kOP,•OH and kOP can be used to estimate kOP,•OH of an organic chemical, which cannot be determined using the competition method. kPRD,•OH and k8-HQ,•OH were determined to be 7.4 × 109 M-1 s-1 and (4.6-5.5) × 109 M-1 s-1, respectively. Compared with conventional supporting electrolyte (like SO42-), H2PO4- and HPO42- improved kPRD and k8-HQ by 1.3-1.6-fold, while SO32- and HCO3- inhibited kPRD and k8-HQ significantly, down to 80%. Additionally, the degradation pathway of 8-HQ was proposed based on the detection of intermediates from GC-MS.
Collapse
Affiliation(s)
- Hoang Nguyen Tien
- The University of Da Nang, University of Science and Education, 459 Ton Duc Thang st., Lien Chieu, Da Nang, 550000, Viet Nam; The University of Da Nang, Environmental Protection and Research Center, 54 Nguyen Luong Bang st., Da Nang, 550000, Viet Nam.
| | - Fredrick Mwazighe
- Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P. O. Box 30197, 00100, Nairobi, Kenya
| |
Collapse
|