1
|
Jiao Z, Ge S, Liu Y, Wang Y, Wang Y, Wang Y. Phosphate-enhanced Cd stabilization in soil by sulfur-doped biochar: Reducing Cd phytoavailability and accumulation in Brassica chinensis L. and shaping the microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125375. [PMID: 39581365 DOI: 10.1016/j.envpol.2024.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
To explore the potential of livestock manure-derived biochar for the remediation of Cd-contaminated soil, a pot experiment was conducted to explore the stabilization efficiency of cattle manure biochar (T2, BC), sulfur-doped biochar (T3, SBC), and SBC combined with phosphate (T4, SBC-PF) on Cd in contaminated soil and their effects on Cd accumulation in Chinese cabbage (Brassica chinensis L.) and soil microorganisms. The results showed that soil available phosphorus (AP), available potassium (AK), and organic matter (OM) significantly increased in T3 and T4, and the biomass of Chinese cabbage also increased from 0.46 g/pot to 0.57 and 1.05 g/pot, respectively. The DTPA-extractable Cd in T3 and T4 dramatically reduced by 78.6% and 91.4% (p < 0.05); the acid-soluble Cd decreased by 11.3% and 13.2%; and the residual Cd increased by 30.0% and 10.0%. Most importantly, the Cd contents in T2, T3, and T4 decreased by 2.2%, 89.7%, and 93.1% in the shoots of Chinese cabbage and 21.3%, 82.2%, and 86.2% in the roots of Chinese cabbage, respectively. Moreover, SBC-PF obviously changed the bacterial community and enhanced the interactions among microbes in the soil. Structural equation modeling revealed that microbial interspecific mutualistic relationships were the key factor in the pathway for reducing Cd phytoavailability. Mantel tests and random forest analyses further revealed that biochar enhanced the interactions among microorganisms by increasing the AP content in the soil. These findings demonstrated that SBC combined with phosphate is appropriate for stabilizing Cd and improving soil quality.
Collapse
Affiliation(s)
- Zhiqiang Jiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Shiji Ge
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yifan Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangzhou Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yong Wang
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Zhang C, Zha Y, Guang P, Ai F, Yin Y, Guo H. Synergistic effects of tree-herb intercropping on the phytoremediation efficiency of cadmium and lead contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176709. [PMID: 39378933 DOI: 10.1016/j.scitotenv.2024.176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Tree-herb intercropping has emerged as an effective strategy for the remediation of soil contamination. In this study, the effects of intercropping willow with herbaceous plants Lolium perenne L., Iris lactea Pall. and Bidens pilosa L. were investigated on the phytoremediation of Cd- and Pb-contaminated soil. After a 90-day of cultivation, the results showed that intercropping stimulated the phytoremediation efficiency through increased metal accumulation in plants. Intercropping caused a significant (p < 0.05) increase in willow biomass ranging from 48.07 % to 95.58 % by promoting photosynthesis activities and antioxidant responses. Metal contents in willow leaves and roots were also observably (p < 0.05) enhanced, indicating a beneficial effect in tree-herb intercropping systems. The biomass and metal accumulation of I. lactea Pall. and B. pilosa L. decreased due to competitive interactions with willow in the intercropping treatments. However, intercropping with willow (p < 0.05) significantly increased the Pb contents of L. perenne L. Intercropping improved the absorption of bioavailable fractions of Cd and Pb by willow and herbs in comparison to the monoculture. The decrease in soil Cd contents was partly due to the chemical changes induced by root exudates, which enhanced the transfer of Cd from the soil to the plants. Willow showed a tendency for Cd accumulation, whereas herbs exhibited Pb accumulation, reflecting the complementarity of metal accumulation in tree-herb intercropping patterns. Intercropping willow with B. pilosa L. was found to be an effective method for the remediation of Cd-contaminated soil, whereas the combination of willow with L. perenne L. proved suitable for the Pb-contaminated soil. These findings might support the potential of tree-herb intercropping as an effective strategy for enhancing the phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Chentao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yidi Zha
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Penghong Guang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Li X, Wu Y, Yang K, Zhu M, Wen J. The impact of microbial community structure changes on the migration and release of typical heavy metal (loid)s during the revegetation process of mercury-thallium mining waste slag. ENVIRONMENTAL RESEARCH 2024; 251:118716. [PMID: 38490627 DOI: 10.1016/j.envres.2024.118716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The effect of changes in microbial community structure on the migration and release of toxic heavy metal (loid)s is often ignored in ecological restoration. Here, we investigated a multi-metal (mercury and thallium, Tl) mine waste slag. With particular focus on its strong acidity, poor nutrition, and high toxicity pollution characteristics, we added fish manure and carbonate to the slag as environmental-friendly amendments. On this basis, ryegrass, which is suitable for the remediation of metal waste dumps, was then planted for ecological restoration. We finally explored the influence of changes in microbial community structure on the release of Tl and As in the waste slag during vegetation reconstruction. The results show that the combination of fish manure and carbonate temporarily halted the release of Tl, but subsequently promoted the release of Tl and arsenic (As), which was closely related to changes in the microbial community structure in the waste slag after fish manure and carbonate addition. The main reason for these patterns was that in the early stage of the experiment, Bacillaceae inhibited the release of Tl by secreting extracellular polymeric substances; with increasing time, Actinobacteriota became the dominant bacterium, which promoted the migration and release of Tl by mycelial disintegration of minerals. In addition, the exogenously added organic matter acted as an electron transport medium for reducing microorganisms and thus helped to reduce nitrate or As (Ⅴ) in the substrate, which reduced the redox potential of the waste slag and promoted As release. At the same time, the phylum Firmicutes, including specific dissimilatory As-reducing bacteria that are capable of converting As into a more soluble form, further promoted the release of As. Our findings provide a theoretical basis for guiding the ecological restoration of relevant heavy-metal (loid) mine waste dumps.
Collapse
Affiliation(s)
- Xingying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Kaizhi Yang
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030000, China
| | - Mei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jichang Wen
- New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Yang J, Xiang J, Goh SG, Xie Y, Nam OC, Gin KYH, He Y. Food waste compost and digestate as novel fertilizers: Impacts on antibiotic resistome and potential risks in a soil-vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171346. [PMID: 38438039 DOI: 10.1016/j.scitotenv.2024.171346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
As a novel agricultural practice, the reuse of food waste compost and digestate as fertilizers leads to a circular economy, but inevitably introduces bio-contaminants such as antibiotic resistance genes (ARGs) into the agroecosystem. Moreover, heavy metal and antibiotic contamination in farmland soil may exert selective pressures on the evolution of ARGs, posing threats to human health. This study investigated the fate, influencing mechanisms and potential risks of ARGs in a soil-vegetable system under different food waste fertilization and remediation treatments and soil contamination conditions. Application of food waste fertilizers significantly promoted the pakchoi growth, but resulted in the spread of ARGs from fertilizers to pakchoi. A total of 56, 80, 84, 41, and 73 ARGs, mobile genetic elements (MGEs) and metal resistance genes (MRGs) were detected in the rhizosphere soil (RS), bulk soil (BS), control soil (CS), root endophytes (RE), and leaf endophytes (LE), respectively. Notably, 7 genes were shared in the above five subgroups, indicating a specific soil-root-endophytes transmission pathway. 36 genes were uniquely detected in the LE, which may originate from airborne ARGs. The combined application of biochar and fertilizers reduced the occurrence of ARGs and MGEs to some extent, showing the remediation effect of biochar. The average abundance of ARGs in the RS, BS and CS was 3.15 × 10-2, 1.31 × 10-2 and 2.35 × 10-1, respectively. Rhizosphere effects may reduce the abundance of ARGs in soil. The distribution pattern of ARGs was influenced by the types of soil, endophyte and contaminant. MGEs is the key driver shaping ARGs dynamics. Soil properties and pakchoi growth status may affect the bacterial composition, and consequently regulate ARGs fate, while endophytic ARGs were more impacted by biotic factors. Moreover, the average daily doses of ARGs from pakchoi consumption is 107-109 copies/d/kg, and its potential health risks should be emphasized.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jinyi Xiang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ong Choon Nam
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
5
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
6
|
Qiu J, De Souza MF, Wang X, Ok YS, Meers E. Influence of biochar addition and plant management (cutting and time) on ryegrass growth and migration of As and Pb during phytostabilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169771. [PMID: 38176551 DOI: 10.1016/j.scitotenv.2023.169771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Phytostabilization of metal-contaminated soils can be enabled or improved by biochar application. However, biochar-aided effects vary on biochar types, and little attention has been paid to plant management (time and cutting) to enhance phytostabilization efficiency in synergy with biochar. Therefore, biochars derived from pig manure (PM), Japanese knotweed (JK), and a mixture of both (P1J1) were applied to Pb and As mining soil with ryegrass cultivation to assess the biochar-induced effects on plant growth, dissolved organic matter (DOM), As and Pb mobility, and bioaccumulation within a phytostabilization strategy. Additional treatments involving the combined biochar (P1J1) and ryegrass were conducted to explore the influence of sequential cutting and growing time on facilitating phytostabilization efficacy. Biochar applications promoted plant growth, progressively increasing over time, but were not enhanced by cutting. Short and long-wavelength humic-like DOM substances identified in the soil pore water after biochar application varied depending on the biochar types used, providing evidence for the correlation among DOM changes, biochar origin, and metal immobilization. Biochar-treated soils exhibited reduced Pb availability and enhanced As mobility, with P1J1 stabilizing Pb significantly similar to PM while causing less As mobilization as JK did. The mobilized As did not result in increased plant As uptake; instead, all biochar-added plants showed a significant decrease in As and Pb concentrations compared to those without biochar. Soil available As decreased while available Pb increased with time, and cutting did not influence soil As behavior but did reduce soil Pb release. Nevertheless, plant As and Pb concentrations decreased over time, whereas those in multiple-cut plants were generally higher than those without cuts. Biochar, especially P1J1, along with growth time, holds promise in promoting plant biomass, reducing plant Pb and As concentrations, and minimizing the migration of PbAs within the soil.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Marcella Fernandes De Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Xiaolin Wang
- Future Energy Center, School of Business, Society and Engineering, Mälardalen University, 722 23 Västerås, Sweden
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|