1
|
Soimalaitong S, Nuchan P, Sangsawang A, Kovitvadhi U, Kovitvadhi S, Klaimala P, Srakaew N. Hemolymph responses of the Thai freshwater mussel Hyriopsis bialata exposed to atrazine. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138064. [PMID: 40158507 DOI: 10.1016/j.jhazmat.2025.138064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/04/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
An herbicide atrazine (ATZ) is widely applied in agricultural areas of several countries, including Thailand, and has predisposition to contamination in both terrestrial and aquatic environments, leading to deteriorating effects on non-target organisms. Bivalve hemolymph has gained considerable interest as a useful tool and a potential target for assessing and monitoring aquatic toxicity. The primary goal of this study was to determine time-course responses of biochemical, cellular, and functional traits of the hemolymph from Thai freshwater mussel Hyriopsis bialata exposed to ATZ. The mussels were dosed with environmentally-related (0.02 and 0.2 mg/L) and high (2 mg/L) concentrations of ATZ, while ATZ-untreated mussels served as an experimental control. The hemolymph was collected from the anterior adductor muscles over a 28-day exposure. Analysis of pooled hemolymph from the same treatment groups showed that ATZ had limited effects on the hemolymph parameters of the mussels although temporary inhibition was observed in terms of phagocytic activity and lysosomal membrane stability. Overall, the present study generally indicated tolerance of the hemolymph components upon ATZ exposure to the mussels and could lay groundwork on screening of promising hemolymph biomarkers for real-time, repetitive assessment of ATZ toxicity, thus revealing potential risks of ATZ to aquatic ecosystems.
Collapse
Affiliation(s)
- Sarocha Soimalaitong
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pattanan Nuchan
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Akkarasiri Sangsawang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Satit Kovitvadhi
- Department of Agriculture, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Thonburi, Bangkok 10600, Thailand
| | - Pakasinee Klaimala
- Impact of Pesticide Use Subdivision, Pesticide Research Group, Agricultural Production Science Research and Development Office, Department of Agriculture, Ministry of Agriculture and Cooperatives, Chatuchak, Bangkok 10900, Thailand
| | - Nopparat Srakaew
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Wang N, Liang Y, Zhai W, Zhao F, Zheng L, Wang P, Zhou Z, Liu X, Liu D. Dealkylation metabolites of Atrazine: A previously Neglected Contributor to soybean phytotoxicity within atrazine residue. ENVIRONMENT INTERNATIONAL 2025; 199:109498. [PMID: 40300498 DOI: 10.1016/j.envint.2025.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
The phytotoxicity risks of atrazine to crops have received widespread attention, but the toxic effects of its metabolites on plants have been largely overlooked. In this study, the contributions and mechanisms underlying phytotoxicity of the atrazine and its metabolites (DEA and DIA) were systematically investigated in soybean seedlings. Two dealkylation metabolites DEA and DIA caused growth suppression, inhibited photosynthesis, activated the antioxidant system, and induced changes in chloroplast ultrastructure in soybean seedlings. Integrated Biological Response (IBR) analysis indicated that at equivalent environmentally relevant concentrations, the toxicity indices of DEA and DIA were 73.60% and 34.00% of atrazine, respectively. Molecular docking analysis revealed that both DEA and DIA exhibited high binding energies with Photosystem II D1 protein, with their potential target protein in soybean plants being consistent with that of atrazine. Metabolomic analysis further confirmed that the metabolites DEA and DIA disrupt key metabolic pathways, including alpha-linolenic acid metabolism, consistent with the mode of action of atrazine. These effects are associated with the inhibition of the photosynthetic electron transport chain and ROS accumulation. By calculating the environmental risk quotient, the risk of metabolites DEA to succeeding crops is likely to exceed that posed by the parent atrazine. These findings suggested that dealkylation metabolites of atrazine are overlooked contributors to soybean phytotoxicity in atrazine residue, and the risks posed by herbicide metabolites to crops need to be addressed.
Collapse
Affiliation(s)
- Nan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yabo Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wangjing Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Fanrong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Jiang Z, Wang J, Cao K, Liu Y, Wang B, Wang X, Wang Y, Jiang D, Cao B, Zhang Y. Foliar application of selenium and gibberellins reduce cadmium accumulation in soybean by regulating interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134868. [PMID: 38897119 DOI: 10.1016/j.jhazmat.2024.134868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Both selenium (Se) and gibberellins (GA3) can alleviate cadmium (Cd) toxicity in plants. However, the application of Se and GA3 as foliar spray to against Cd stress on soybean and its related mechanisms have been poorly explored. Herein, this experiment evaluated the effects of Se and GA3 alone and combined application on soybean rhizosphere microenvironment, Cd accumulation and growth of soybean seedlings. The results revealed that both Se and GA3 can effectively decrease the accumulation of Cd in soybean seedlings. Foliar application of Se, GA3 and their combination reduced Cd contents in soybean seedlings respectively by 21.70 %, 27.53 % and 45.07 % when compared with the control treatment, suggest a synergistic effect of Se and GA3 in decreasing Cd accumulation. Se and GA3 also significantly increased diversity and abundance of the metabolites in rhizosphere, which consequently played an important role in shaping rhizosphere bacteria community and improve rhizosphere soil physicochemical properties of Cd contaminated soil, as well as decreased the Cd available forms contents but enhance the immobilized form levels. Overall, this study affords a novel approach on mitigating Cd accumulation in soybean seedlings which is attributed to Se and GA3 regulated interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianmin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiqin Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yiyan Liu
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoxin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuying Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Harindintwali JD, He C, Wen X, Liu Y, Wang M, Fu Y, Xiang L, Jiang J, Jiang X, Wang F. A comparative evaluation of biochar and Paenarthrobacter sp. AT5 for reducing atrazine risks to soybeans and bacterial communities in black soil. ENVIRONMENTAL RESEARCH 2024; 252:119055. [PMID: 38710429 DOI: 10.1016/j.envres.2024.119055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Geographical Sciences, Nantong University, Nantong, 226001, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Zhao S, Wang J. Biodegradation of atrazine and nicosulfuron by Streptomyces nigra LM01: Performance, degradative pathway, and possible genes involved. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134336. [PMID: 38640665 DOI: 10.1016/j.jhazmat.2024.134336] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.
Collapse
Affiliation(s)
- Shengchen Zhao
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jihong Wang
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
6
|
El-Kordy A, Kanzy HM, Elgamouz A, Douma M, Mazouz H, Kawde AN, Tijani N. Synthesis and characterization of faujasite zeolite membrane for selective enrichment of Arthrobacter sp. in synthetic wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2921-2935. [PMID: 38877622 DOI: 10.2166/wst.2024.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
This paper centers on the preparation and characterization of both a clay support and a faujasite zeolite membrane. Additionally, the study explores the development of bacterial media to assess the performance of these prepared membranes. The faujasite zeolite membrane was created using the hydrothermal method, involving the deposition of a faujasite layer to fine-tune the pore sizes of the clay support. The clay supports were crafted from clay which was sieved to particle size Φ ≤ 63 μm, and compacted with 3.0 wt.% activated carbon, then sintered at 1,000 °C. Distilled water fluxes revealed a decrease from 1,500 L m-2 h-1 to a minimum of 412 L m-2 h-1 after 180 min of filtration. Both membranes were characterized by XRF, XRD, FTIR, adsorption-desorption of nitrogen (N2), and SEM-EDS. PCR technique was used for the identification of the isolated Arthrobacter sp., and the retention of the bacteria on the clay support and the faujasite zeolite membrane were found to be 96 and 99%, respectively. The results showed that the faujasite zeolite membrane passed the clay support due to a narrow pore size of the faujasite zeolite membrane of 2.28 nm compared to 3.55 nm for the clay supports.
Collapse
Affiliation(s)
- Abderrazek El-Kordy
- Materials, Membranes and Nanotechnology Laboratory, Faculty of Sciences, University of Moulay Ismail, P. O. Box 11201, Zitoune, Meknes 50060, Morocco
| | - Heba M Kanzy
- Faculty of Sciences, Laboratory of Biotechnologies and Valorisation of Bioresources, Moulay Ismaïl University of Meknes, BP 11201, Zitoune, Meknes, Morocco; Cluster of Competencies Agri-food and Food Safety, Moulay Ismail University of Meknes, Marjane 2, BP 298, Meknes, Morocco
| | - Abdelaziz Elgamouz
- Department of Chemistry, Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates E-mail:
| | - Mohamed Douma
- Materials, Membranes and Nanotechnology Laboratory, Faculty of Sciences, University of Moulay Ismail, P. O. Box 11201, Zitoune, Meknes 50060, Morocco
| | - Hamid Mazouz
- Faculty of Sciences, Laboratory of Biotechnologies and Valorisation of Bioresources, Moulay Ismaïl University of Meknes, BP 11201, Zitoune, Meknes, Morocco; Cluster of Competencies Agri-food and Food Safety, Moulay Ismail University of Meknes, Marjane 2, BP 298, Meknes, Morocco
| | - Abdel-Nasser Kawde
- Department of Chemistry, Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Najib Tijani
- Materials, Membranes and Nanotechnology Laboratory, Faculty of Sciences, University of Moulay Ismail, P. O. Box 11201, Zitoune, Meknes 50060, Morocco
| |
Collapse
|
7
|
Huang M, Zeng Q, Ying X, Zheng B, Chen X, Wang G, Gao Y, Yu G. Improved analysis of 230 pesticide residues in three fermented soy products by using automated one-step accelerated solvent extraction coupled with GC-MS/MS. J Chromatogr A 2024; 1723:464906. [PMID: 38643739 DOI: 10.1016/j.chroma.2024.464906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Consumer concerns over healthy diets are increasing as a result of the toxicity and persistence of pesticide residues in foodstuffs. Developing sensitive and high-throughput monitoring techniques for these trace residues is seen as an essential step in ensuring food safety. An automatic and sensitive multi-residue analytical method was developed and validated for the simultaneous determination of 230 compounds, including pesticides and their hazardous metabolites, in fermented soy products. The method included preparing the sample using on-line extraction and clean-up system based on accelerated solvent extraction (ASE), then determining the analytes using GC-MS/MS techniques. The homogenized samples (soy sauce, douchi, and sufu) were automatically extracted at 80 °C and 10.3 MPa and at the same time, in situ cleaned by 300 mg of primary secondary amine (PSA) combined with 20 mg of hydroxylated multi-walled carbon nanotubes in an extraction cell. The method obtained excellent calibration linearity (r > 0.9220) and a satisfactory analysis of the targeted compounds, which were evaluated with matrix-matched calibration standards over the range of 5-500 μg L-1. The limit of detections (LODs) of analytes were in the range of 0.01-1.29 μg kg-1, 0.01-1.39 μg kg-1, and 0.01-1.34 μg kg-1 in soy sauce, douchi, and sufu, respectively. The limit of quantifications (LOQs), which defined as the lowest spiking level, were set at 5.0 μg kg-1. The recoveries were within 70-120 % for over 95 % of the analytes, and the relative standard deviations (RSDs) were below 13.6 %. Moreover, a positive detection rate of 47 % were obtained when the proposed method was used on 15 real fermented soy products. These results suggested that the developed high-throughput method is highly feasible for monitoring of these target analytes in trace level.
Collapse
Affiliation(s)
- Minxing Huang
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China
| | - Qiuxia Zeng
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China
| | - Xinlan Ying
- Guangzhou Foreign Language School, Guangzhou 511455, China
| | - Bingyi Zheng
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China
| | - Xiaochu Chen
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China.
| | - Guihua Wang
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China.
| | - Yufeng Gao
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China
| | - Goubin Yu
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China
| |
Collapse
|
8
|
Guo Q, Zhai W, Li P, Xiong Y, Li H, Liu X, Zhou Z, Li B, Wang P, Liu D. Nitrogen fertiliser-domesticated microbes change the persistence and metabolic profile of atrazine in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133974. [PMID: 38518695 DOI: 10.1016/j.jhazmat.2024.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Pesticides and fertilisers are frequently used and may co-exist on farmlands. The overfertilisation of soil may have a profound influence on pesticide residues, but the mechanism remains unclear. The effects of chemical fertilisers on the environmental behaviour of atrazine and their underlying mechanisms were investigated. The present outcomes indicated that the degradation of atrazine was inhibited and the half-life was prolonged 6.0 and 7.6 times by urea and compound fertilisers (NPK) at 1.0 mg/g (nitrogen content), respectively. This result, which was confirmed in both sterilised and transfected soils, was attributed to the inhibitory effect of nitrogen fertilisers on soil microorganisms. The abundance of soil bacteria was inhibited by nitrogen fertilisers, and five families of potential atrazine degraders (Micrococcaceae, Rhizobiaceae, Bryobacteraceae, Chitinophagaceae, and Sphingomonadaceae) were strongly and positively (R > 0.8, sig < 0.05) related to the decreased functional genes (atzA and trzN), which inhibited hydroxylation metabolism and ultimately increased the half-life of atrazine. In addition, nitrogen fertilisers decreased the sorption and vertical migration behaviour of atrazine in sandy loam might increase the in-situ residual and ecological risk. Our findings verified the weakened atrazine degradation with nitrogen fertilisers, providing new insights into the potential risks and mechanisms of atrazine in the context of overfertilisation.
Collapse
Affiliation(s)
- Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Huimin Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Bingxue Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
9
|
Harindintwali JD, Wen X, He C, Zhao M, Wang J, Dou Q, Xiang L, Fu Y, Alessi DS, Jiang X, Jiang J, Wang F. Synergistic mitigation of atrazine-induced oxidative stress on soybeans in black soil using biochar and Paenarthrobacter sp. AT5. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120951. [PMID: 38669877 DOI: 10.1016/j.jenvman.2024.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Atrazine, a widely used herbicide in modern agriculture, can lead to soil contamination and adverse effects on specific crops. To address this, we investigated the efficacy of biochar loaded with Paenarthrobacter sp. AT5 (an atrazine-degrading bacterial strain) in mitigating atrazine's impact on soybeans in black soil. Bacterially loaded biochar (BBC) significantly enhanced atrazine removal rates in both unplanted and planted soil systems. Moreover, BBC application improved soybean biomass, photosynthetic pigments, and antioxidant systems while mitigating alterations in metabolite pathways induced by atrazine exposure. These findings demonstrate the effectiveness of BBC in reducing atrazine-induced oxidative stress on soybeans in black soil, highlighting its potential for sustainable agriculture.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mingxu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianhao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
11
|
Han S, Tao Y, Zhao L, Cui Y, Zhang Y. Metabolic insights into how multifunctional microbial consortium enhances atrazine removal and phosphorus uptake at low temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132539. [PMID: 37717445 DOI: 10.1016/j.jhazmat.2023.132539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Agricultural soils in the black soil region of northeast China often face negative stress due to low temperatures, pesticide contamination, and inadequate nutrient supply. In this study, a new cold-tolerant strain of Peribacillus simplex C1 (C1) was selectively isolated from atrazine contaminated soil. The artificially constructed microbial consortium (CPD) [C1, phosphorus-solubilizing bacterium Enterobacter sp. P1, and atrazine-degrading bacterium Acinetobacter lwoffii DNS32] demonstrated the most effective performance in enhancing atrazine degradation and phosphorus-solubilizing capacity when the initial inoculation ratio of 5:1:2 at 15 °C. CPD enhanced energy-related metabolic pathways and increased choline production to regulate bacterial adaptation to temperature decrease. Additionally, the strains could selectively utilize carbon sources (low molecular weight organic acids) or nitrogen sources (some metabolites of atrazine) provided by each other to enhance growth. Furthermore, strain C1 enhanced membrane fluidity through increased expression of the unsaturated fatty acids. Pot experiments demonstrated that CPD assisted soybean seedlings in resisting dual stresses of low temperature and atrazine contamination by inducing the expression of genes related to photosynthesis, membrane permeability, phosphorus response, and cold tolerance.
Collapse
Affiliation(s)
- Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Longwei Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
12
|
Zhou F, Liang Q, Zhao X, Wu X, Fan S, Zhang X. Comparative metaproteomics reveal co-contribution of onion maggot and its gut microbiota to phoxim resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115649. [PMID: 37913580 DOI: 10.1016/j.ecoenv.2023.115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Pesticide resistance inflicts significant economic losses on a global scale each year. To address this pressing issue, substantial efforts have been dedicated to unraveling the resistance mechanisms, particularly the newly discovered microbiota-derived pesticide resistance in recent decades. Previous research has predominantly focused on investigating microbiota-derived pesticide resistance from the perspective of the pest host, associated microbes, and their interactions. However, a gap remains in the quantification of the contribution by the pest host and associated microbes to this resistance. In this study, we investigated the toxicity of phoxim by examining one resistant and one sensitive Delia antiqua strain. We also explored the critical role of associated microbiota and host in conferring phoxim resistance. In addition, we used metaproteomics to compare the proteomic profile of the two D. antiqua strains. Lastly, we investigated the activity of detoxification enzymes in D. antiqua larvae and phoxim-degrading gut microbes, and assessed their respective contributions to phoxim resistance in D. antiqua. The results revealed contributions by D. antiqua and its gut bacteria to phoxim resistance. Metaproteomics showed that the two D. antiqua strains expressed different protein profiles. Detoxifying enzymes including Glutathione S-transferases, carboxylesterases, Superoxide Dismutase, Glutathione Peroxidase, and esterase B1 were overexpressed in the resistant strain and dominated in differentially expressed insect proteins. In addition, organophosphorus hydrolases combined with a group of ABC type transporters were overexpressed in the gut microbiota of resistant D. antiqua compared to the sensitive strain. 85.2% variation of the larval mortality resulting from phoxim treatment could be attributed to the combined effects of proteins from both from gut bacteria and D. antiqua, while the individual contribution of proteins from gut bacteria or D. antiqua alone accounted for less than 10% of the variation in larval mortality caused by phoxim. The activity of the overexpressed insect enzymes and the phoxim-degrading activity of gut bacteria in resistant D. antiqua larvae were further confirmed. This work enhances our understanding of microbiota-derived pesticide resistance and illuminates new strategies for controlling pesticide resistance in the context of insect-microbe mutualism.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Qingxia Liang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China.
| |
Collapse
|