1
|
Xie J, Lan R, Zhang L, Yu J, Liu X, You Z, Yang F, Lin T. Global occurrence, food web transfer, and human health risks of polycyclic aromatic hydrocarbons in biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177969. [PMID: 39652991 DOI: 10.1016/j.scitotenv.2024.177969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread organic pollutants that pose significant health risks due to their bioaccumulation in the biota. This study examines the global distribution of PAHs in biota, identifies key factors influencing using boosted regression tree (BRT) models, analyzes their transfer through trophic magnification factors (TMF), and evaluates health risks using the EPA risk assessment model. Research on PAHs has grown from 1978 to 2023, peaking in 2021, with 171 out of 241 studies (71.1 %) focusing on marine ecosystems. The highest PAH concentrations are observed in the Mediterranean Sea, Red Sea, and North American coastal regions, primarily influenced by industrial and human activities, such as factory emissions and ship transport. BRT analysis shows region factors and feeding habitats significantly influence PAH levels. TMF analysis shows that biodilution is the main mechanism for PAH attenuation, with concentrations decreasing as trophic levels increase. Additionally, health risk assessment further illustrate that toxicity equivalent (TEQ) values are highest in Egypt and Turkey. Across all populations in Egypt, the United States, Turkey, Portugal, and China, as well as children in Portugal and Sweden, there are potential risks from aquatic product consumption (10-6 < CRI < 10-4), with CRI values positively correlated with liver cancer incidence. While hazard quotients (HQ) < 1 suggest overall safety, higher obesity risks are noted, particularly among women and adolescents.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Ruo Lan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jun Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xinran Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyang You
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Wejieme N, Vigliola L, Parravicini V, Sellanes J, Wafo E, Zapata-Hernandez G, Bustamante P, Letourneur Y. Widespread presence of metallic compounds and organic contaminants across Pacific coral reef fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177914. [PMID: 39662401 DOI: 10.1016/j.scitotenv.2024.177914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Coral reef fishes represent an invaluable source of macro- and micro-nutrients for tropical coastal populations. However, several potentially toxic compounds may jeopardize their contribution to food security. Concentrations of metallic compounds and trace elements (MTEs), and persistent organic pollutants (POPs, including pesticides and polychlorobiphenyls PCBs), totalizing 36 contaminants, were measured in coral reef fish from several Pacific islands. The objective of this study was to describe the spatial distribution of these compounds and contaminants in order to identify potential variables explaining their distribution at a Pacific-wide scale. To achieve this, we applied Boosted Regression Trees to model species-specific and community-level contaminant and inorganic compound concentrations at the scale of the tropical Pacific Ocean. Overall, using 15 easily accessible explanatory variables, we successfully explained between 60 and 87 % of the global variation, with fish body size being the most important correlate of MTEs and POPs concentrations in reef fish. Our modeling approach allowed us to estimate and map the distribution of the community-level concentration of 19 contaminants and inorganic compounds at the scale of the equatorial and south Pacific Ocean. Spatial patterns varied significantly depending on the compound, with modeled quantities per 100 g of fish flesh generally being higher in the central and southwest Pacific than in the eastern part of the basin. These patterns were influenced by a combination of biological, environmental, anthropogenic and biogeographical variables. Overall, this approach represents an important step toward the estimation of concentrations of the main compounds on the basis of species identity and fishing location. Our results enhance our understanding of the extent of contamination in the Pacific while underscoring the urgent need for long-term and large-scale spatial monitoring of diverse compounds in this region.
Collapse
Affiliation(s)
- Noreen Wejieme
- ENTROPIE (UR-IRD-CNRS-IFREMER-UNC), Université de la Nouvelle-Calédonie, LabEx "Corail", BP R4, 98851 Nouméa, Cedex, New Caledonia
| | - Laurent Vigliola
- ENTROPIE (UR-IRD-CNRS-IFREMER-UNC), Institut de Recherche pour le Développement, LabEx « Corail », BP A5, 101 Promenade Roger Laroque, 98848 Nouméa, New-Caledonia, France
| | - Valeriano Parravicini
- CRIOBE, PSL Research University, USR 3278 EPHE-CNRS-UPVD, LabEx « Corail », Université de Perpignan, Avenue Paul Alduy, 66860 Perpignan, Cedex, France
| | - Javier Sellanes
- Departamento de Biología Marina & Centro ESMOI, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo, Chile
| | - Emmanuel Wafo
- Aix-Marseille Université, INSERM SSA-MCT, Laboratoire Chimie Analytique, Faculté de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille, cedex 05, France
| | - German Zapata-Hernandez
- Departamento de Biología Marina & Centro ESMOI, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo, Chile; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Genova Marine Center, 16126 Genova, Italy
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Yves Letourneur
- ENTROPIE (UR-IRD-CNRS-IFREMER-UNC), Université de la Nouvelle-Calédonie, LabEx "Corail", BP R4, 98851 Nouméa, Cedex, New Caledonia.
| |
Collapse
|
3
|
Menezes-Sousa D, Vianna M, Malm O, Torres JPM, Alonso MB. First assessment of persistent organic pollutants and halogenated natural compounds in an omnivorous resident coral-reef fish species, black triggerfish, Melichthys niger, from an Atlantic oceanic island, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174947. [PMID: 39047826 DOI: 10.1016/j.scitotenv.2024.174947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Studies on the occurrence of POPs and other persistent compounds in pristine areas are extremely valuable, as they offer insights on the long-range transportation of POPs and the occurrence of natural compound producers' areas. In this regard, this study aimed to report data of both anthropogenic (polychlorinated biphenyls, PCBs, and polybrominated diphenyl ethers, PBDEs) and natural (methoxylated PBDEs, MeO-BDEs) compounds in tissues of the black triggerfish, Melichthys niger (Tetraodontiformes, Balistidae), specimens (n = 30) sampled in 2018 during a scientific expedition conducted at Trindade Island. Concentrations of ∑28PCBs ranged from 73 to 1052 ng g-1 lw in liver, 334 to 1981 ng g-1 lw in gonads, and 20 to 257 ng g-1 lw in muscle, with the predominance of PCB-180 in liver and PCB-52 in gonad and muscle. Concentrations of ∑7PBDEs ranged from
Collapse
Affiliation(s)
- Dhoone Menezes-Sousa
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Micropoluentes Jan Japenga, Av. Carlos Chagas Filho, 373 CCS - Bl. G, Rio de Janeiro, RJ 21941-541, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Radioisótopos Eduardo Penna Franca, Av. Carlos Chagas Filho, 373 CCS - Bl. G, Rio de Janeiro, RJ 21941-541, Brazil.
| | - Marcelo Vianna
- Universidade Federal do Rio de Janeiro, Instituto de Biologia. Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Av. Carlos Chagas Filho, 373, CCS, Bl. A., Rio de Janeiro, Rio de Janeiro 21941-541, Brazil; IMAM - AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil.
| | - Olaf Malm
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Radioisótopos Eduardo Penna Franca, Av. Carlos Chagas Filho, 373 CCS - Bl. G, Rio de Janeiro, RJ 21941-541, Brazil
| | - João Paulo Machado Torres
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Micropoluentes Jan Japenga, Av. Carlos Chagas Filho, 373 CCS - Bl. G, Rio de Janeiro, RJ 21941-541, Brazil
| | - Mariana Batha Alonso
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Micropoluentes Jan Japenga, Av. Carlos Chagas Filho, 373 CCS - Bl. G, Rio de Janeiro, RJ 21941-541, Brazil
| |
Collapse
|
4
|
Wang F, Wang J, He Y, Yan Y, Fu D, Rene ER, Singh RP. Effect of different bulking agents on fed-batch composting and microbial community profile. ENVIRONMENTAL RESEARCH 2024; 249:118449. [PMID: 38354880 DOI: 10.1016/j.envres.2024.118449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Jingyao Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yuheng He
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
5
|
Shaw KR, Whitney JL, Nalley EM, Schmidbauer MC, Donahue MJ, Black J, Corniuk RN, Teague K, Sandquist R, Pirkle C, Dacks R, Sudnovsky M, Lynch JM. Microplastics absent from reef fish in the Marshall Islands: Multistage screening methods reduced false positives. MARINE POLLUTION BULLETIN 2024; 198:115820. [PMID: 38029668 DOI: 10.1016/j.marpolbul.2023.115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Island communities, like the Republic of the Marshall Islands (RMI), depend on marine resources for food and economics, so plastic ingestion by those resources is a concern. The gastrointestinal tracts of nine species of reef fish across five trophic groups (97 fish) were examined for plastics >1 mm. Over 2100 putative plastic particles from 72 fish were identified under light microscopy. Only 115 of these from 47 fish passed a plastic screening method using Fourier-transform infrared microspectroscopy (μFTIR) in reflectance mode. All of these were identified as natural materials in a final confirmatory analysis, attenuated total reflectance FTIR. The high false-positive rate of visual and μFTIR methods highlight the importance of using multiple polymer identification methods. Limited studies on ingested plastic in reef fish present challenging comparisons because of different methods used. No plastic >1 mm were found in the RMI reef fish, reassuring human consumers.
Collapse
Affiliation(s)
- Katherine R Shaw
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA; National Institute of Standards and Technology, Waimānalo, HI 96795, USA.
| | | | - Eileen M Nalley
- Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96815, USA; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Madeline C Schmidbauer
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Jesse Black
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Raquel N Corniuk
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Kellie Teague
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Rachel Sandquist
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA
| | - Catherine Pirkle
- Office of Public Health Studies, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Rachel Dacks
- Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96815, USA
| | - Max Sudnovsky
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA; NOAA, USA
| | - Jennifer M Lynch
- Hawai'i Pacific University Center for Marine Debris Research, Waimānalo, HI 96795, USA; National Institute of Standards and Technology, Waimānalo, HI 96795, USA
| |
Collapse
|
6
|
Ghosh D, Saha SK, Kaviraj A, Saha S. Transfer of chromium from environment to fish in East Kolkata wetlands - evaluation by structural equation modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1463. [PMID: 37955763 DOI: 10.1007/s10661-023-12002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Chromium (Cr) is a significant pollutant in the effluents from leather industries and domestic city sewage. Cr was determined in water, sediment, and different tissues (gill, muscle, intestine, liver, and kidney) of Nile tilapia, Oreochromis niloticus harvested from wastewater-fed aquaculture (WFA) situated at Bamonghata, Bantala, Chowbaga and Chingrighata of East Kolkata Wetlands (EKW), a Ramsar site in West Bengal, India. The results showed that Cr concentration in surface water ranged between 0.05 to 0.15 mg/L, while Cr was detected at high concentration (100-300 mg/kg) in the sediment soil of the first three WFAs and in moderate concentration (50-110 mg/kg) in Chingrighata WFA. Average Cr concentrations in the tissues were ranked in the following sequence: kidney>liver>intestine>gill>muscle. However, the extent of accumulation of Cr in different tissues varied between the WFAs. We used Structural Equation Modeling (SEM) to determine the route of Cr transfer. The fitness of the model was evaluated by the performance measures. Cr accumulation pathways varied between the sites depending upon the level of Cr in water or sediment. Except for Bamonghata WFA, sediment was found as the principal source of accumulation of Cr in different tissues of O. niloticus. Cr refluxed from sediment into overlying water and accumulated in fish either through the food chain or through direct accumulation from water. In Bamonghata WFA, the role of sediment in the transfer of Cr could not be established due to the high water depth or biological non-availability of Cr in the sediment. It is concluded from this study that fish reared in the WFAs of EKW are still not hazardous in respect to Cr but require proper management to avoid the influx of Cr-containing effluents into the WFAs.
Collapse
Affiliation(s)
- Debkanta Ghosh
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, W.B., 700126, India
- Department of Zoology, Vidyasagar College for Women, 39, Sankar Ghosh lane, Kolkata, WB, 700006, India
| | - Samir Kumar Saha
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, W.B., 700126, India
| | - Anilava Kaviraj
- Department of Zoology, University of Kalyani, Kalyani, W.B., 741235, India
| | - Subrata Saha
- Department of Materials and Production, Aalborg University, 9220, Alborg, DK, Denmark.
- Symbiosis Institute of Geoinformatics (SIG), Symbiosis International (Deemed University) (SIU), Model Colony, Pune, Maharashtra, India.
| |
Collapse
|