1
|
Lee DE, Husain A, Khan A, Danish M, Jo WK. Versatile platform of 3D/2D/1D:ZnFe 2O 4/NiAl-LDH/MWCNTs nanocomposite for photocatalytic purification of dinoseb and electrocatalytic O 2 evolution reaction. ENVIRONMENTAL RESEARCH 2025; 264:120367. [PMID: 39549909 DOI: 10.1016/j.envres.2024.120367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Integrating photocatalysis with electrocatalysis may represent a synergistic approach to address environmental and energy challenges. In this context, we explored synthesizing a series of nanocomposite materials using a solid-state approach involving simple grinding and subsequent thermal treatment for the photocatalytic purification of dinoseb and electrocatalytic oxygen evolution (OER). Interestingly, among the series of synthesized materials, 40 wt percentage of 3D/2D/1D:ZnFe2O4/NiAl-LDH/MWCNTs ternary nanocomposite (40-NZM) showed highly improved dinoseb detoxification and OER efficiencies compared to those of pure materials. Importantly, approximately 98% detoxification of dinoseb was observed within 75 min of irradiation time under a visible light source. Remarkably, the 40-NZM nanocomposite exhibited the highest rate constant value (k = 4.1 × 10-2 min-1) with a favorable R2 (0.98) parameter. Furthermore, 40-NZM showed promising electrocatalytic OER performance, requiring only 217 mV of overpotential to achieve 10 mAcm-2 of current density with a smaller Tafel slope of 66.6 mVdec-1. Additionally, long-term stability was tested by recording 2000 cyclic voltammetry (CV) cycles. The results revealed that 40-NZM could maintain its catalytic activity for a longer duration as it required only 227 mV to attain 10 mAcm-2 even after 2000 CV cycles. Consequently, these outstanding characteristics of 40-NZM nanocomposite underscore the significant potential for catalytic water purification and sustainable energy conversion.
Collapse
Affiliation(s)
- Dong-Eun Lee
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ahmad Husain
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang, 43000, Selangor, Malaysia
| | - Azam Khan
- Department of Chemistry, Zakia Afaque Islamia College, Siwan, Jai Prakash University, Chapra, Bihar, India
| | - Mohtaram Danish
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Wan-Kuen Jo
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Xie H, Mu M, Lu G, Zhang Y. Ferrocene crosslinked and functionalized chitosan microspheres towards bio-based Fenton-like system for the removal of organic pollutants. Int J Biol Macromol 2024; 261:129699. [PMID: 38281517 DOI: 10.1016/j.ijbiomac.2024.129699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Dye-containing wastewater treatment has been a major long-term global challenge. For this purpose, a novel bio-based microspheres (CS-FC) with high specific surface area (63.24 m2·g-1) and nano-channels (17.95 nm) was prepared using chitosan as the framework and ferrocene as a crosslinking active group. CS-FC not only has the ability to rapidly enrich methyl orange (MO) through hydrogen-bonding and electrostatic attraction, but also almost completely degrades it in the presence of H2O2/K2S2O8 through a synergistic radical/non-radical mechanism under the activating effect of ferrocene. Without H2O2/K2S2O8, the maximum MO adsorption capacity of CS-FC is in the range 871-1050 mg·g-1, and conforms to a Langmuir isothermal model with pseudo-second-order kinetics. In the presence of H2O2/K2S2O8, the removal of MO dramatically increased from 32 % to nearly 100 % after incubation for 60 min, due to the simultaneous formation of highly reactive 1O2 and ·OH. The significant contribution from 1O2 endowed CS-FC/H2O2/K2S2O8 with high universality for degrading various organic pollutants (including azo dyes and antibiotics), a wide pH window (2-8), and low sensitivity to co-existing ions. Such cost-effective, recyclable porous bio-based microspheres are suitable for heterogeneous Fenton-like catalysis in organic wastewater treatment that rely on synergistic radical/non-radical reaction pathways.
Collapse
Affiliation(s)
- Huan Xie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Meng Mu
- Shengli Oilfeld Company, SINOPEC, Dongying City, Shandong Province 257001, PR China
| | - Guoqiang Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Samarasinghe LV, Muthukumaran S, Baskaran K. Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. CHEMOSPHERE 2024; 349:140818. [PMID: 38056717 DOI: 10.1016/j.chemosphere.2023.140818] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The rapid development in industrialization and urbanization coupled with an ever-increasing world population has caused a tremendous increase in contamination of water resources globally. Synthetic dyes have emerged as a major contributor to environmental pollution due to their release in large quantities into the environment, especially owing to their high demand in textile, cosmetics, clothing, food, paper, rubber, printing, and plastic industries. Photocatalytic treatment technology has gained immense research attention for dye contaminated wastewater treatment due to its environment-friendliness, ability to completely degrade dye molecules using light irradiation, high efficiency, and no generation of secondary waste. Photocatalytic technology is evolving rapidly, and the foremost goal is to synthesize highly efficient photocatalysts with solar energy harvesting abilities. The current review provides a comprehensive overview of the most recent advances in highly efficient visible light-activated photocatalysts for dye degradation, including methods of synthesis, strategies for improving photocatalytic activity, regeneration and their performance in real industrial effluent. The influence of various operational parameters on photocatalytic activity are critically evaluated in this article. Finally, this review briefly discusses the current challenges and prospects of visible-light driven photocatalysts. This review serves as a convenient and comprehensive resource for comparing and studying the fundamentals and recent advancements in visible light photocatalysts and will facilitate further research in this direction.
Collapse
Affiliation(s)
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, College of Sport, Health & Engineering, Victoria University, Melbourne, VIC, 8001, Australia
| | - Kanagaratnam Baskaran
- Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, 3216, Australia
| |
Collapse
|
4
|
Fei Q, Yin H, Yuan C, Zhang Y, Zhao Q, Lv H, Zhang Y, Zhang Y. Visible-light-driven AgI/Bi4O5I2 S-scheme heterojunction for efficient tetracycline hydrochloride removal: Mechanism and degradation pathway. CHEMOSPHERE 2023:139326. [PMID: 37392792 DOI: 10.1016/j.chemosphere.2023.139326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The existence of excessive tetracycline hydrochloride (TCH) in the ecological environment has seriously threatened human health, so there is an urgent need to develop a high-performance photocatalyst that can efficiently and greenly remove TCH. Currently, most photocatalysts have the problems of fast recombination of photogenerated charge carriers and low degradation efficiency. Herein, S-scheme AgI/Bi4O5I2 (AB) heterojunctions was constructed for TCH removal. Compared with the single component, the apparent kinetic constant of the 0.7AB is 5.6 and 10.2 time as high as the AgI and Bi4O5I2, and the photocatalytic activity only decreases by 3.0% after four recycle runs. In addition, to verify the potential practical application of the fabricated AgI/Bi4O5I2 nanocomposite, the photocatalytic degradation of TCH was performed under different conditions by regulating the dosage of photocatalyst, the TCH concentration, pH, and the existence of various anions. Systematical characterizations are conducted to investigate the intrinsic physical and chemical properties of the constructed AgI/Bi4O5I2 composites. Based on the synergetic characterizations by in situ X-ray photoelectron spectroscopy, band edge measurements, as well as reactive oxygen species (ROS) detections, the S-scheme photocatalytic mechanism is proved. This work provides a valuable reference for developing efficient and stable S-scheme AgI/Bi4O5I2 photocatalyst for TCH removal.
Collapse
Affiliation(s)
- Qian Fei
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Hongfei Yin
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Chunyu Yuan
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yujin Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Qiuyu Zhao
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Huijun Lv
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
5
|
Wu Y, Liu Y, Kamyab H, Manivasagan R, Rajamohan N, Ngo GH, Xia C. Physico-chemical and biological remediation techniques for the elimination of endocrine-disrupting hazardous chemicals. ENVIRONMENTAL RESEARCH 2023:116363. [PMID: 37295587 DOI: 10.1016/j.envres.2023.116363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Rajasimman Manivasagan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Gia Huy Ngo
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
6
|
Rationally Designed C-PANI/BiOBr Step-scheme Heterojunction Photocatalyst for Boosting Photodegradation of 17β-estradiol. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|