1
|
Senila M. Polymer Inclusion Membranes (PIMs) for Metal Separation-Toward Environmentally Friendly Production and Applications. Polymers (Basel) 2025; 17:725. [PMID: 40292533 PMCID: PMC11945652 DOI: 10.3390/polym17060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Polymer inclusion membranes (PIMs) have been reported to be useful for the selective separation of numerous metal ions, with multiple applications in areas such as analytical chemistry, water quality monitoring, water treatment, and metal recovery. This review aims to update the recent advancements related to PIM technology in metal ion separation, with a particular emphasis on environmentally friendly production and applications. PIMs have many advantages over classical liquid-liquid extraction, such as excellent selectivity, ease of use with simultaneous extraction and back-extraction, stability, and reusability. PIMs typically consist of a base polymer, a carrier, and, if necessary, a plasticizer, and can therefore be tailored to specific analytes and specific matrices. Consequently, numerous studies have been carried out to develop PIMs for specific applications. In analytical chemistry, PIMs have been used mostly for analyte preconcentration, matrix separation, speciation analysis, and sensing. They can be used as passive sampling tools or integrated into automated water monitoring systems. PIMs are also widely studied for the extraction and purification of valuable metals in the frame of the circular economy, as well as for wastewater treatment. Even if they are a greener alternative to classical metal extraction, their production still requires petroleum-based polymers and toxic and volatile solvents. In recent years, there has been a clear trend to replace classical polymers with biodegradable and bio-sourced polymers and to replace the production of PIMs using toxic solvents with those based on green solvents or without solvents. According to the published literature, environmentally friendly PIM-based techniques are a highly recommended area of future research for metal ion separation directed toward a wide range of applications.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Zhang P, Li P, Ping Y, Xu H, Zhang Z, Zhao F, Zeng G, Huang P, Yang Z. Anionic surfactant-activated remediation of Pb, Cd, As contaminated soil by electrochemical technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175889. [PMID: 39216763 DOI: 10.1016/j.scitotenv.2024.175889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lead (Pb), cadmium (Cd) and arsenic (As) contamination in soils show a growing environmental concern. However, owing to the significant differences in chemical characteristics, remediating heavy metal(loid)s of Pb, Cd and As is challenging. Herein, anionic surfactant-activated electrochemical approach was proposed to realize efficient immobilization of As, Cd and Pb heavy metal(loid)s from contaminated soils. In this innovative method, calcium lignosulfonate (CL) as anionic surfactant was used to activate Cd and Pb from contaminated soils into solution, afterwards anodically generated Fe (II) ions by the electrochemical process react with Pb and Cd to form precipitates. Meanwhile, owing to the strong binding capacities of Fe (II) ions, As contaminations were remediated. Moreover, via various characterizations and cyclic voltammetric method, the reaction kinetics and phase transformation process during the electrochemical process were analyzed in detail. These findings show great potential in optimizing the design of electrochemical treatment, which will be applied in remediating multi-component heavy metal(loid) polluted soils.
Collapse
Affiliation(s)
- Ping Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Penggang Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Yang Ping
- Power China Eco-Environmental Group Co., LTD., Shenzhen 518102, China
| | - Hao Xu
- Power China Eco-Environmental Group Co., LTD., Shenzhen 518102, China
| | - Zhenzhou Zhang
- Power China Eco-Environmental Group Co., LTD., Shenzhen 518102, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Gai Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Jing L, Shi T, Chang Y, Meng X, He S, Xu H, Yang S, Liu J. Cellulose-based materials in environmental protection: A scientometric and visual analysis review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172576. [PMID: 38649055 DOI: 10.1016/j.scitotenv.2024.172576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
As sustainable materials, cellulose-based materials have attracted significant attention in the field of environmental protection, resulting in the publication of numerous academic papers. However, there is a scarcity of literature that involving scientometric analysis within this specific domain. This review aims to address this gap and highlight recent research in this field by utilizing scientometric analysis and a historical review. As a result, 21 highly cited articles and 10 mostly productive journals were selected out. The scientometric analysis reveals that recent studies were objectively clustered into five interconnected main themes: extraction of cellulose from raw materials and its degradation, adsorption of pollutants using cellulose-based materials, cellulose-acetate-based membrane materials, nanocellulose-based materials, and other cellulose-based materials such as carboxymethyl cellulose and bacterial cellulose for environmental protection. Analyzing the distribution of author keywords and thoroughly examining relevant literature, the research focuses within these five themes were summarized. In the future, the development of eco-friendly and cost-effective methods for extracting and preparing cellulose and its derivatives, particularly nanocellulose-based materials, remains an enduring pursuit. Additionally, machine learning techniques holds promise for the advancement and application of cellulose-based materials. Furthermore, there is potential to expand the research and application scope of cellulose-based materials for environmental protection.
Collapse
Affiliation(s)
- Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tianyu Shi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yulung Chang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Xingliang Meng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuai He
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Hang Xu
- School of Material Science & Chemical Engineering, Harbin University of Science and Technology, Harbin, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jia Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
4
|
Wang J, Chen M, Han Y, Sun C, Zhang Y, Zang S, Qi L. Fast and efficient As(III) removal from water by bifunctional nZVI@NBC. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:160. [PMID: 38592564 DOI: 10.1007/s10653-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 μg/L were above 99% (the residual total arsenic below 10 μg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 μM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).
Collapse
Affiliation(s)
- Jiuwan Wang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mengfan Chen
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yulian Han
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ying Zhang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Shuyan Zang
- Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China.
| | - Lin Qi
- Shenyang Municipal Bureau of Ecology and Environment, Shenyang, 110036, People's Republic of China
| |
Collapse
|
5
|
Dakova I, Yordanova T, Karadjova I. Polymeric Materials in Speciation Analysis Based on Solid-Phase Extraction. Molecules 2023; 29:187. [PMID: 38202769 PMCID: PMC10780835 DOI: 10.3390/molecules29010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Speciation analysis is a relevant topic since the (eco)toxicity, bioavailability, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). The reliability of analytical results for chemical species of elements depends mostly on the maintaining of their stability during the sample pretreatment step and on the selectivity of further separation step. Solid-phase extraction (SPE) is a matter of choice as the most suitable and widely used procedure for both enrichment of chemical species of elements and their separation. The features of sorbent material are of great importance to ensure extraction efficiency from one side and selectivity from the other side of the SPE procedure. This review presents an update on the application of polymeric materials in solid-phase extraction used in nonchromatographic methods for speciation analysis.
Collapse
Affiliation(s)
| | | | - Irina Karadjova
- Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, James. Bourchier Blvd.1, 1164 Sofia, Bulgaria; (I.D.); (T.Y.)
| |
Collapse
|
6
|
Shaik AM, Choi EH. Neutral - Eradication of As (III) and Congo red (CR) with green iron oxide (GIO) loaded chitosan(C) - (C - GIO) beads by a non - Thermal plasma jet via potential study. CHEMOSPHERE 2023:139363. [PMID: 37422214 DOI: 10.1016/j.chemosphere.2023.139363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
In this potential - study, the non - thermal atmospheric pressure plasma is utilized for the neutral - eradication of water contaminants. In the air ambient region, plasma induced reactive species, like as OH•, O (O2-), H2O2 (OH•+OH•) & NOx are performed for the oxidative and reductive transformation of AsIII (H3AsO3) to AsV (H2As O4-) & Fe3O4 (Fe3+) (C-GIO) to Fe2O3 (Fe2+). Whereas, the H2O2 & NOx are quantified maximum (max.) in water, which is 144.24 & 111.82 μM, respectively. In the absence of plasma and plasma with C-GIO, the AsIII was more eradicated, which is 64.01 and 100.00%. While, the C - GIO (catalyst) synergistic enhancement was performed and proved by the neutral - degradation of CR. Also, the AsV adsorbed on C-GIO adsorption capacity qmax and redox-adsorption yield were evaluated, which are 1.36 mg/g and 20.80 g/kWh, respectively. In this research, the waste material (GIO) was recycled, modified, and utilized for the neutral - eradication of water contaminates, which are organic (CR) and inorganic (AsIII) toxicants by the controlling of H and OH• under the interaction of plasma with catalyst (C-GIO). However, in this research, plasma can't adopt the acidic, which is controlled by the C-GIO via RONS. Moreover, in this eradicative study, various water pH alignments were performed, from neutral to acidic & neutral & base for toxicants removal. Furthermore, according to WHO norms, the arsenic level was reduced to 0.01 mg/l for environmental safety. The kinetic and isotherm studies were followed by the mono and multi-layer adsorption was performed on the surface of C - GIO beads, which is estimated by the fitting of rate limiting constant R2 ≈ 1. Furthermore, the C-GIO was examined several characterizations alignments, such as crystal, surface, functional, elemental composition, retention time, mass spectrum, and elemental oriented properties. Overall, the suggested hybrid system is an eco-friendly pathway for the natural - eradication of contaminants, such as organic and inorganic compounds via waste material (GIO) recycling, modification, oxidation, reduction, adsorption, degradation, and neutralization phenomenon.
Collapse
Affiliation(s)
- Abdul Munnaf Shaik
- Electrical and Biological Physics Department, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Centre (PBRC), Kwangwoon University, Seoul, South Korea
| | - Eun Ha Choi
- Electrical and Biological Physics Department, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Centre (PBRC), Kwangwoon University, Seoul, South Korea.
| |
Collapse
|
7
|
Al-Ghamdi YO, Jabli M, Alhalafi MH, Khan A, Alamry KA. Hybridized sulfated-carboxymethyl cellulose/MWNT nanocomposite as highly selective electrochemical probe for trace detection of arsenic in real environmental samples. RSC Adv 2023; 13:18382-18395. [PMID: 37342813 PMCID: PMC10278092 DOI: 10.1039/d3ra03808d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
A highly selective and ultra-sensitive electrochemical sensing probe was proposed by combining sulfated-carboxymethyl cellulose (CMC-S) and a functionalized-multiwalled carbon nanotube (f-MWNT) nano-composite with high conductivity and durability. The CMC-S/MWNT nanocomposite was impregnated on a glassy carbon electrode (GCE) to construct the non-enzymatic and mediator-free electrochemical sensing probe for trace detection of As(iii) ions. The fabricated CMC-S/MWNT nanocomposite was characterized by FTIR, SEM, TEM, and XPS. Under the optimized experimental conditions, the sensor exhibited the lowest detection limit of 0.024 nM, a high sensitivity (69.93 μA nM-1 cm-2) with a good linear relationship in the range of 0.2-90 nM As(iii) concentration. The sensor demonstrated strong repeatability, with the current response continuing at 84.52% after 28 days of use, in addition to good selectivity for the determination of As(iii). Additionally, with recovery ranging from 97.2% to 107.2%, the sensor demonstrated comparable sensing capability in tap water, sewage water, and mixed fruit juice. The electrochemical sensor for detecting trace levels of As(iii) in actual samples is anticipated to be produced by this effort and is expected to possess great selectivity, good stability, and sensitivity.
Collapse
Affiliation(s)
- Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Mahjoub Jabli
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Mona H Alhalafi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Ajahar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Department of Food and Nutrition, Bionanocomposite Research Center, Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul South Korea
| |
Collapse
|