1
|
Salsabila N, Al-Ansari T, Bicer Y. A review of the potential of seawater brine for enhancing food security in hot arid climates: A case study of Qatar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124216. [PMID: 39864157 DOI: 10.1016/j.jenvman.2025.124216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
This study explores Qatar's utilisation of seawater to support food security, emphasising the innovative strategies and technological advancements to address the environmental and agricultural challenges posed by rejected brine from desalination processes. It examines various brine treatment and disposal methodologies, highlighting the environmental impacts and proposing sustainable solutions to mitigate these effects. The discussion further explores the potential of electrodialysis and other emerging technologies for converting rejected brine into valuable agricultural resources, thereby contributing to food security in arid regions. Through a comprehensive review of current research and potential innovations, this study highlights the critical intersection of water resource management, environmental sustainability, and food production, particularly in Qatar's unique geographical and climatic conditions.
Collapse
Affiliation(s)
- Nadira Salsabila
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.
| | - Tareq Al-Ansari
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Yusuf Bicer
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
2
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
3
|
Recepoğlu YK, Arabacı B, Kahvecioğlu A, Yüksel A. Granulation of hydrometallurgically synthesized spinel lithium manganese oxide using cross-linked chitosan for lithium adsorption from water. J Chromatogr A 2024; 1719:464712. [PMID: 38377662 DOI: 10.1016/j.chroma.2024.464712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
A drastic increase in demand for electric vehicles and energy storage systems increases lithium (Li) need as a critical metal for the 21st century. Lithium manganese oxides stand out among inorganic adsorbents because of their high capacity, chemical stability, selectivity, and affordability for lithium recovery from aqueous media. This study investigates using hydrometallurgically synthesized lithium manganese oxide (Li1.6Mn1.6O4) in granular form coated with cross-linked chitosan for lithium recovery from water. Characterization methods such as SEM, FTIR, XRD, and BET reveal the successful synthesis of the composite adsorbent. Granular cross-linked chitosan-coated and delithiated lithium manganese oxide (CTS/HMO) adsorbent demonstrated optimal removal efficiency of 86 % at pH 12 with 4 g/L of adsorbent dosage. The Langmuir isotherm at 25 °C, which showed monolayer adsorption with a maximum capacity of 4.94 mg/g, a better fit for the adsorption behavior of CTS/HMO. Adsorption was endothermic and thermodynamically spontaneous. Lithium adsorption followed the pseudo-first-order kinetic model.
Collapse
Affiliation(s)
- Yaşar K Recepoğlu
- Department of Chemical Engineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Bahriyenur Arabacı
- Department of Chemical Engineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Anıl Kahvecioğlu
- Department of Chemical Engineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Aslı Yüksel
- Department of Chemical Engineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey; Izmir Institute of Technology, Geothermal Energy Research and Application Center, Urla, Izmir 35430, Turkey.
| |
Collapse
|
4
|
Hu J, Harandi HB, Chen Y, Zhang L, Yin H, He T. Anisotropic gypsum scaling of corrugated polyvinylidene fluoride hydrophobic membrane in direct contact membrane distillation. WATER RESEARCH 2023; 244:120513. [PMID: 37651864 DOI: 10.1016/j.watres.2023.120513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) technology has gained a lot of attention for treatment of geothermal brine, high salinity waste streams. However, mineral scaling remains a major challenge when treating complex high-salt brines. The development of surface-patterned superhydrophobic membranes is one of the core strategies to solve this problem. We prepared flat sheet membranes (F-PVDF) and hydrophobic membranes with micron-scale corrugated pattern (C-PVDF) using a phase separation method. Their scaling behavior was systematically evaluated using calcium sulfate solutions and the impact of the feed flow was innovatively investigated. Although C-PVDF shows higher contact angle and lower sliding angle than F-PVDF, the scaling resistance of C-PVDF in the perpendicular flow direction has worst scaling resistance. Although the nucleation barrier of the corrugated membrane is the same at both parallel and perpendicular flow directions based on the traditional thermodynamic nucleation theory, experimental observations show that the C-PVDF has the best scaling resistance in the parallel flow direction. A 3D computational fluid dynamics (CFD) model was used and the hydrodynamic state of the pattern membranes was assessed as a determinant of the scaling resistance. The corrugated membrane with parallel flow mode (flow direction in parallel to the corrugation ridge) induces higher fluid velocity within the channel, which mitigated the deposition of crystals. While in the perpendicular flow mode (flow direction in perpendicular to the corrugation ridge), the solutions confined in the corrugated grooves due to vortex shielding, which aggravates the scaling. These results shed light on the mechanism of scaling resistance of corrugated membranes from a hydrodynamic perspective and reveal the mechanism of anisotropy exhibited by corrugated membranes in MD.
Collapse
Affiliation(s)
- Jiaqi Hu
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hesam Bazargan Harandi
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yecang Chen
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Liwei Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|