1
|
Shi F, Ma L, Chen Z, Huang Y, Lin L, Qin Z. Long-term disinfectant exposure on intestinal immunity and microbiome variation of grass carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106942. [PMID: 38788458 DOI: 10.1016/j.aquatox.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiome is crucial in maintaining fish health homeostasis. Disinfectants can kill important pathogens and disinfect fish eggs, yet their effect on the immune pathways and intestinal microbiome in healthy fish remains unknown. In this study, we investigated the effects of two disinfectants on the transcriptome profiles, immunological response, and gut microbiota dynamics of grass carp over a four-week trial. In particular, aquatic water was disinfected with 80 μg/L glutaraldehyde or 50 μg/L povidone-iodine. We found that glutaraldehyde and povidone-iodine induced gut antioxidant system and depressed the function of grass carp digestive enzymes. The results of the 16S rDNA high-throughput sequencing identified a reduction in the diversity of grass carp gut microbiota following the disinfectant treatment. Moreover, transcriptome profiling revealed that disinfectant exposure altered the immune-related pathways of grass carp and inhibited the expression of inflammation and tight junction related genes. Finally, the histopathological observation and apoptosis detection results suggested that the long-term diet of disinfectant destroyed intestinal structural integrity and promoted apoptosis. In conclusion, long-term exposure to disinfectants was observed to reduce oxidation resistance, suppress the immune response, dysbiosis of the intestinal flora, and resulted in increasing the apoptosis in intestinal of grass carp.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lixin Ma
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhilong Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yao Huang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
2
|
Shi F, Chen Z, Yao M, Huang Y, Xiao J, Ma L, Mo J, Lin L, Qin Z. Effects of glutaraldehyde and povidone-iodine on apoptosis of grass carp liver and hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116078. [PMID: 38335575 DOI: 10.1016/j.ecoenv.2024.116078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Since disinfectants are used all over the world to treat illnesses in people and other animals, they pose a major risk to human health. The comprehensive effects of disinfectant treatments on fish liver, especially the impacts on oxidative stress, toxicological effects, transcriptome profiles, and apoptosis, have not yet been fully analyzed. In the current investigation, healthy grass carp were exposed to 80 μg/L glutaraldehyde or 50 μg/L povidone-iodine for 30 days. First, the findings of enzyme activity tests demonstrated that the administration of glutaraldehyde could considerably increase oxidative stress by lowering T-SOD, CAT, and GPx and raising MDA. Furthermore, KEGG research revealed that exposure to glutaraldehyde and povidone-iodine stimulated the PPAR signal pathway. To further elucidate the transcriptome results, the relative expressions of related DEGs in the PPAR signal pathway were verified. Glutaraldehyde induced apoptosis in liver tissue of grass carp; however, it activated cytotoxicity and apoptosis in grass carp hepatocytes when exposed to glutaraldehyde or povidone-iodine. According to the current study, disinfectants can cause the impairment of the immune system, oxidative stress, and attenuation of the PPAR signal pathway in the liver of grass carp, making them detrimental as dietary supplements for grass carp, particularly in the aquaculture sector.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Zhilong Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Minshan Yao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yao Huang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin Xiao
- Department of orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Lixin Ma
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Jilin Mo
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|