1
|
Ali M, Liu J, Kwon E, Fujii M. Unveiling molecular DOM reactomics and transformation coupled with multifunctional nanocomposites under anaerobic conditions: Tracking potential metabolomics and pathways. CHEMOSPHERE 2025; 372:144111. [PMID: 39837067 DOI: 10.1016/j.chemosphere.2025.144111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Anaerobic digestion (AD) offers great potential for pollutant removal and bioenergy recovery. However, it faces challenges when using livestock manure (LSM) as a feedstock given its high content of refractory materials (e.g., lignocellulose, long-chain carbohydrates, lipids, and crude protein). This would significantly inhibit AD-microbial activities, reduce organic transformation efficiency and limit gas production. To overcome this, multifunctional metal-doped hydrochars (HCs) were introduced here as AD supplements/accelerators, given that LSM degradation under AD results in complex dissolved organic matter (DOM). To assess this, the current study investigates the molecular interactions/transformations within DOM during LSM-AD coupled with metal-doped HCs, via batch-mode experiments. Expansive data mining techniques were employed to analyze DOM using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Substantial increments in peptide-like along with decrements in highly unsaturated-like molecules were observed in HC@MnCl2 containing-system. This indicates an increased capability for substrate hydrolysis and potential utilization of soluble microbial products (SMPs) (i.e., highly unsaturated-like molecules), leading to enhanced methane recovery (223.23 mL/g-VSadded, 1.77 times more than the control). However, accumulation of DOM-highly unsaturated molecules (i.e., a lack of SMPs' degradation) accompanied with low methane production (39.68 mL/g-VSadded) was noticed for HC@NiFe2O4. DOM reactivity during LSM-AD was validated via paired mass difference molecular network, indicating predominance of CHO and N-containing groups' transformations for HC@MnCl2 and HC@NiFe2O4, respectively. Potential metabolites and abundant pathways were verified via KEGG database. This study improves our understanding of LSM-AD-DOM complex transformation matrix, the fate of bioavailable/recalcitrant compounds, and identification of potential DOM regulators from thousands of molecules.
Collapse
Affiliation(s)
- Manal Ali
- Civil Engineering Department, Aswan University, Aswan, 81511, Egypt; Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Jibao Liu
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, 980-8578, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
2
|
Kellerman AM, Lin Y, McKenna AM, Osborne TZ, Canion A, Lee Y, Freitas AM, Chanton JP, Spencer RGM. Identifying the Molecular Signatures of Organic Matter Leached from Land-Applied Biosolids via 21 T FT-ICR Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2665-2674. [PMID: 39869539 DOI: 10.1021/acs.est.3c06678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways. To identify novel tracers of biosolids, characterization of biosolids and their impacts on OM composition in recipient ecosystems is required. Here, water-soluble OM was leached from surface soils from Florida pastures with differing levels of biosolid amendment and an adjacent control site. The biosolid endmember was further constrained by extracting water-soluble OM from biosolids sourced from four Florida wastewater treatment facilities. Nontargeted analysis of organic molecules by negative-ion electrospray ionization 21 T Fourier transform ion cyclotron resonance mass spectrometry examined the molecular composition of soil and biosolid leachates and identified molecular formulas unique to these biosolids and biosolid amended soils. Overall, biosolids leachates were enriched in aliphatic (+16.3% relative abundance) and heteroatomic (+42.5% RA) formulas and depleted in aromatic formulas (-33.5% RA) compared to soil leachates. A subset of 297 molecular formulas were present only in biosolids and amended soil leachates (i.e., not present in control soil leachates), the vast majority of which contained nitrogen (66%) or sulfur (27%). The identification of these molecular formulas is a key step in identifying novel tracers of biosolids movement through impacted watersheds.
Collapse
Affiliation(s)
- Anne M Kellerman
- National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yang Lin
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, Tallahassee, Florida 32310, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Todd Z Osborne
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Andy Canion
- St. Johns River Water Management District, Palatka, Florida 32177, United States
| | - Yewon Lee
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Andressa M Freitas
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Jeffrey P Chanton
- National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert G M Spencer
- National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Jennings E, Sierra Olea M, Hübner U, Rodrigues Matos R, Reemtsma T, Lechtenfeld OJ. Molecular-Level Insights into Recalcitrant Ozonation Products from Effluent Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:823-833. [PMID: 39713968 PMCID: PMC11741107 DOI: 10.1021/acs.est.4c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Wastewater ozonation is commonly employed to enhance the subsequent biodegradation of effluent organic matter (EfOM) and contaminants of concern. However, there is evidence suggesting the formation of recalcitrant ozonation products (OPs) from EfOM. To investigate the biodegradability of OPs we conducted batch biodegradation experiments using wastewater effluent ozonated with mass-labeled (18O) ozone. Molecular level analysis of EfOM was performed using reversed-phase liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (LC-FT-ICR MS) after 3 and 28 days in batch bioreactors. The use of mass labeling allowed for the unambiguous detection of OPs, with 2933 labeled OP features identified in the ozonated EfOM. Furthermore, employing polarity separation with LC facilitated the investigation of reactivity among different OP isomers. Overall, OPs exhibited a comparable proportion of recalcitrant and bioproduced molecular formulas when compared to the remaining EfOM, with 12% of OPs classified as recalcitrant and 17% bioproduced, indicating that OPs themselves are not inherently biodegradable. Additionally, recalcitrant OPs were found to be more polar based on the O/C ratios and retention time, in comparison to biodegradable OPs. Approximately one-third of the OP isomers displayed variations in their biodegradability, suggesting that studying the degradability of ozonated EfOM at the molecular formula level is heavily influenced by structural differences. Here, we offer unique insight into the biological transformation of EfOM after ozonation using labeled ozone and LC-FT-ICR MS analysis.
Collapse
Affiliation(s)
- Elaine
K. Jennings
- Department
Environmental Analytical Chemistry, Helmholtz
Centre for Environmental Research−UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Millaray Sierra Olea
- Chair
of Urban Water Systems Engineering, Technical
University of Munich—TUM, Am Coulombwall 3, 85748 Garching, Germany
| | - Uwe Hübner
- Chair
of Urban Water Systems Engineering, Technical
University of Munich—TUM, Am Coulombwall 3, 85748 Garching, Germany
| | - Rebecca Rodrigues Matos
- Department
Environmental Analytical Chemistry, Helmholtz
Centre for Environmental Research−UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department
Environmental Analytical Chemistry, Helmholtz
Centre for Environmental Research−UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Oliver J. Lechtenfeld
- Department
Environmental Analytical Chemistry, Helmholtz
Centre for Environmental Research−UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- ProVIS
− Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research − UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
4
|
Wu S, Qian Y, Chen Y, Guo J, Shi Y, An D. Response and roles of algal organic matter under copper stress: Spectral and mass spectrometry analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177968. [PMID: 39647195 DOI: 10.1016/j.scitotenv.2024.177968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Eutrophication leads to various environmental issues, including pollution caused by the production of algal organic matter (AOM). Algae typically respond to environmental changes (e.g., light, temperature, copper [Cu(II)] concentration and pH) by regulating the production and release of different substances, thereby causing unpredictable effects on water quality. We explored the characteristics of AOM and the response mechanisms of algae under Cu(II) stress in the study, using fluorescence spectrum and high-resolution mass spectrometry (HRMS) analysis. The growth of Microcystis aeruginosa was inhibited under Cu(II) stress which was irreversible at Cu(II) concentration ≥ 2 μmol/L. Tryptophan- and humic-like fluorophores were important constituents of extracellular organic matter (EOM), and their contents increased with the addition of Cu(II), indicating that Cu(II) stimulates the production of tryptophan- and humic-like compounds. In addition, fulvic acid-like compounds in EOM were the main components binding to Cu(II) and were overproduced by algae under Cu(II) stress. It was found by HRMS at the molecular level that the formula numbers of EOM generally increased over inhibition time. Under 1 μmol/L Cu(II) stress, nitrogenous compounds (CHON formulae) were the primary AOM, accounting for 37.3-52.0 %. In addition, algae release a large amount of condensed aromatic structures to balance Cu(II) stress. This study provides a molecular-level analysis to explain the variation trends and response mechanisms of algae under various Cu(II) concentrations. The research methods are helpful for utilizing multiple advanced analysis methods to study algae growth and AOM release.
Collapse
Affiliation(s)
- Shuqi Wu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China; Department of chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jun Guo
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Yijun Shi
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Wei Q, Chen C, Ma HP, Liu T, Liu B, Wang TX, Zhang S, Yang DH, Lv WJ, Wang HL. On the FT-ICR mass spectrometry analysis of dissolved organic matter released by adsorbent during coal chemical wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175660. [PMID: 39168341 DOI: 10.1016/j.scitotenv.2024.175660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
This study analyzed the dissolved organic matter (DOM) released by adsorbent during wastewater treatment. It was found that the adsorption method resulted in an organic removal efficiency of over 97 % for coal-to-olefin (CTO) wastewater, with the lowest value of 15.7 mg/L. The Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) detected 4111 DOM in the wastewater, 4052 remaining DOM after first-stage anthracite (ANC) adsorption, and 1013 after second-stage macroporous adsorption resin (MAR). The removal degree of lipids in wastewater was the highest, followed by aliphatic/amino-acid/mini-peptides and lignin. During the adsorption process, the proportion of halogenated compounds (HCs) declined from 59.86 % to 38.63 % and 21.67 %. Additionally, freshly produced 2035 and 311 DOMs were found in the adsorption effluent of ANC and MAR, respectively, with HCs accounting for 34.71 % and 67.96 %. Upon flowing ultra-pure water through ANC and MAR, the effluent dissolved organic carbon (DOC) ranges were 1.118-3.574 mg/L and 1.014-2.557 mg/L, respectively. There were 159 and 131 species of DOM detected, respectively, with HCs content of 59.06 % and 45.02 %. Comparative experiments revealed the complex components of the wastewater promoting the release of organic matter on the adsorbent surface that further reacted to generate organic matter. However, fewer substances were released by the adsorbent.
Collapse
Affiliation(s)
- Qi Wei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cai Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hong-Peng Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Shaan Xi 710072, China
| | - Tao Liu
- Methanol to Olefins Center, Shaanxi Yanchang Petroleum Yan'an Energy Chemical Co., Ltd., Shaan Xi 727500, China
| | - Bing Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China
| | - Tian-Xiang Wang
- Methanol to Olefins Center, Shaanxi Yanchang Petroleum Yan'an Energy Chemical Co., Ltd., Shaan Xi 727500, China
| | - Sen Zhang
- Methanol to Olefins Center, Shaanxi Yanchang Petroleum Yan'an Energy Chemical Co., Ltd., Shaan Xi 727500, China
| | - Dan-Hui Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wen-Jie Lv
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Hua-Lin Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
6
|
Chapleur O, Guenne A, Rutledge DN, Puig-Castellví F. Monitoring of cellulose-rich biowaste co-digestion with 3D fluorescence spectroscopy and mass spectrometry-based metabolomics. CHEMOSPHERE 2024; 349:140824. [PMID: 38040263 DOI: 10.1016/j.chemosphere.2023.140824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Anaerobic digestion (AD) is a promising waste management strategy that reduces landfilling while generating biogas. Anaerobic co-digestion involves mixing two or more substrates to enhance the nutrient balance required for microorganism growth and thus improve the degradation. Monitoring AD is crucial for comprehending the biological process, optimizing process stability, and achieving efficient biogas production. In this work, we have used three dimensional excitation emission fluorescence spectroscopy and mass spectrometry metabolomics, two complementary techniques, to monitor the anaerobic co-digestion (AcoD) of cellulose, ash wood or oak wood with food waste. The two approaches were compared together and to the biogas production records. Results of this experiment demonstrated the complementarity of both analytical techniques with the measurement of the biogas production since 3D fluorescence spectroscopy and MS metabolomics revealed the earlier molecular changes occurring in the bioreactors, mainly associated with the hydrolysis step, whereas the biogas production data reflected the biological activity in the last step of the digestion. Moreover, in all cases, the three data sets effectively delineated the differences among the substrates. While the two wood substrates were poorly degradable as they were richer in aromatic compounds, cellulose was highly degradable and was characterized by the production of several glycolipids. Then, the three tested AcoDs resulted in a similar 3D EEM fluorescence and metabolomics profiles, close to the one observed for the AD of food waste alone, indicating that the incorporation of the food waste drove the molecular degradation events in the AcoDs. Substrate-specific differences were appreciated from the biogas production data. The overall results of this research are expected to provide insight into the design of guidelines for monitoring AcoD.
Collapse
Affiliation(s)
- Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France
| | - Douglas N Rutledge
- Faculté de Pharmacie, Université Paris-Saclay, 91400, Orsay, France; Muséum National D'Histoire Naturelle, 75005, Paris, France
| | - Francesc Puig-Castellví
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France; Université Paris-Saclay, INRAE AgroParisTech, UMR SayFood, 75005, Paris, France.
| |
Collapse
|
7
|
Xiao Y, Feng J, Zhang L, Yang Y, Zhou X, Xu D, Gong M, Yin H, Yuan S. Purification of dredged water by magnetic coagulation: Response surface optimization and dissolved organic matter removal characteristics. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10996. [PMID: 38369707 DOI: 10.1002/wer.10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
In the present study, magnetic coagulation was used to treat dredged water and the response surface method was used to optimize process parameters. The dissolved organic matter (DOM) removal characteristics were characterized by three-dimensional fluorescence spectrometry and ultra-high resolution mass spectrometry. During the magnetic coagulation process, the suspended solids (SS) removal rate increased initially and then decreased under conditions of increasing magnetic powder dosage and stirring rate. After magnetic coagulation and precipitation for 20 min, the contents of SS, ammonia nitrogen, chemical oxygen demand, and total phosphorus in the treated dredged water met the requirements of the discharge standard (GB8978-1996, China). Three-dimensional fluorescence results showed that magnetic coagulation selectively removed fulvic acids and humic acid substances. After magnetic coagulation with precipitation for 10 min and 20 min, the total relative content of lignins, tannins, proteins, lipids, aminosugars, unsaturated hydrocarbons, condensed aromatic structures, and carbohydrates decreased by 26.3% and 39.4%, respectively. After magnetic coagulation, the distribution range of small molecule DOM shifted to the low H/C and high O/C regions. This study provides a novel perspective for studies on the removal of DOM in dredged water by magnetic coagulation. PRACTITIONER POINTS: SS and DOM removal were significantly enhanced by the use of magnetic coagulation. SS removal efficiency was affected by stirring rate and magnetic powder dosage. Magnetic coagulation selectively removed fulvic acids and humic acid substances. DOM molecule shifted to low H/C and high O/C regions after magnetic coagulation.
Collapse
Affiliation(s)
- Yuanting Xiao
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
| | - Jingwei Feng
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
| | - Liu Zhang
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei, China
| | - Yulin Yang
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
| | - Xuyang Zhou
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
| | - Deqian Xu
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
| | - Miao Gong
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
| | - Hao Yin
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
- Mass Spectrometry Lab, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Shoujun Yuan
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Rathore C, Yadav VK, Amari A, Meena A, Chinedu Egbosiuba T, Verma RK, Mahdhi N, Choudhary N, Sahoo DK, Chundawat RS, Patel A. Synthesis and characterization of titanium dioxide nanoparticles from Bacillus subtilis MTCC 8322 and its application for the removal of methylene blue and orange G dyes under UV light and visible light. Front Bioeng Biotechnol 2024; 11:1323249. [PMID: 38260746 PMCID: PMC10800539 DOI: 10.3389/fbioe.2023.1323249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last decade there has been a huge increase in the green synthesis of nanoparticles. Moreover, there is a continuous increase in harnessing the potential of microorganisms for the development of efficient and biocompatible nanoparticles around the globe. In the present research work, investigators have synthesized TiO2 NPs by harnessing the potential of Bacillus subtilis MTCC 8322 (Gram-positive) bacteria. The formation and confirmation of the TiO2 NPs synthesized by bacteria were carried out by using UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX/EDS). The size of the synthesized TiO2 NPs was 80-120 nm which was spherical to irregular in shape as revealed by SEM. FTIR showed the characteristic bands of Ti-O in the range of 400-550 cm-1 and 924 cm-1 while the band at 2930 cm-1 confirmed the association of bacterial biomolecules with the synthesized TiO2 NPs. XRD showed two major peaks; 27.5° (rutile phase) and 45.6° (anatase phase) for the synthesized TiO2 NPs. Finally, the potential of the synthesized TiO2 NPs was assessed as an antibacterial agent and photocatalyst. The remediation of Methylene blue (MB) and Orange G (OG) dyes was carried out under UV- light and visible light for a contact time of 150-240 min respectively. The removal efficiency for 100 ppm MB dye was 25.75% and for OG dye was 72.24% under UV light, while in visible light, the maximum removal percentage for MB and OG dye was 98.85% and 80.43% respectively at 90 min. Moreover, a kinetic study and adsorption isotherm study were carried out for the removal of both dyes, where the pseudo-first-order for MB dye is 263.269 and 475554.176 mg/g for OG dye. The pseudo-second-order kinetics for MB and OG dye were 188.679 and 1666.667 mg/g respectively. In addition to this, the antibacterial activity of TiO2 NPs was assessed against Bacillus subtilis MTCC 8322 (Gram-positive) and Escherichia coli MTCC 8933 (Gram-negative) where the maximum zone of inhibition in Bacillus subtilis MTCC 8322 was about 12 mm, and for E. coli 16 mm.
Collapse
Affiliation(s)
- Chandani Rathore
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Abhishek Meena
- Department of Physics and Semiconductor Science, Dongguk University, Seoul, Republic of Korea
| | - Titus Chinedu Egbosiuba
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Noureddine Mahdhi
- Laboratory Materials Organizations and Properties, Tunis El Manar University, Tunis, Tunisia
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
9
|
Soleimani-Gorgani A, Al-Hazmi HE, Esmaeili A, Habibzadeh S. Screen-printed Sn-doped TiO 2 nanoparticles for photocatalytic dye removal from wastewater: A technological perspective. ENVIRONMENTAL RESEARCH 2023; 237:117079. [PMID: 37683779 DOI: 10.1016/j.envres.2023.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
TiO2 is widely used as a photocatalyst with a wide band gap, which limited its application. Ion doping and formulating a high-quality screen-printing paste enhance its features. However, the printability of objects for advanced application seems essential nowadays. In this research, the Sn-doped TiO2 nanoparticles were prepared through a sol-gel method followed by calcination at various temperatures of 450 °C, 550 °C, 650 °C, 750 °C, and 850 °C. Screen-printing pastes were prepared with 18 wt% of the synthesized Sn-doped TiO2 nanoparticles to evaluate photocatalytic activity. Finally, the prepared paste with optimum nanoparticle concentration was screen printed onto the microscope glass slides at various printing times (1, 3, and 5 runs) and annealed at 500 °C temperature to investigate the thickness of printed Sn-doped TiO2 nanoparticles effect. The photocatalytic activity and crystal structure of nano Sn-doped-TiO2 were characterized using photoluminescence (PL) spectroscopy and X-ray diffraction (XRD). Transmission electron microscopy (TEM) and scanning electron microscope (SEM) analyses were conducted to investigate the size and morphology of the prepared nanoparticles, respectively. The highest photocatalytic activity for the degradation of methylene blue was obtained at the calcination temperature of 450 °C.
Collapse
Affiliation(s)
- Atasheh Soleimani-Gorgani
- Department of Printing Science and Technology, Institute for Color Science and Technology, 16765654, Tehran, Iran.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, And Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| |
Collapse
|
10
|
Li B, Amin AH, Ali AM, Isam M, Lagum AA, Sabugaa MM, Pecho RDC, Salman HM, Nassar MF. UV and solar-based photocatalytic degradation of organic pollutants from ceramics industrial wastewater by Fe-doped ZnS nanoparticles. CHEMOSPHERE 2023; 336:139208. [PMID: 37321458 DOI: 10.1016/j.chemosphere.2023.139208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
UV and solar-based photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) as an organic contaminant in ceramics industry wastewater by ZnS and Fe-doped ZnS NPs was the focus of this research. Nanoparticles were prepared using a chemical precipitation process. The cubic, closed-packed structure of undoped ZnS and Fe-doped ZnS NPs was formed in spherical clusters, according to XRD and SEM investigations. According to optical studies, the optical band gaps of pure ZnS and Fe-doped ZnS nanoparticles are 3.35 and 2.51 eV, respectively, and Fe doping increased the number of carriers with high mobility, improved carrier separation and injection efficiency, and increased photocatalytic activity under UV or visible light. Doping of Fe increased the separation of photogenerated electrons and holes and facilitated charge transfer, according to electrochemical impedance spectroscopy investigations. Photocatalytic degradation studies revealed that in the present pure ZnS and Fe-doped ZnS nanoparticles, 100% treatment of 120 mL of 15 mg/L phenolic compound was obtained after 55- and 45-min UV-irradiation, respectively, and complete treatment was attained after 45 and 35-min solar light irradiation, respectively. Because of the synergistic effects of effective surface area, more effective photo-generated electron and hole separation efficiency, and enhanced electron transfer, Fe-doped ZnS demonstrated high photocatalytic degradation performance. The study of Fe-doped ZnS's practical photocatalytic treatment capability for removing 120 mL of 10 mg/L 2,4-DCP solution made from genuine ceramic industrial wastewater revealed Fe-doped ZnS's excellent photocatalytic destruction of 2,4-DCP from real industrial wastewater.
Collapse
Affiliation(s)
- Bozhi Li
- School of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Afaf M Ali
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mubeen Isam
- Building and Construction Techniques Engineering, Al-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | | | - Michael M Sabugaa
- Departmment of Electronics Engineering, Agusan Del Sur State College of Agriculture and Technology, Agusan Del Sur, Philippines
| | | | - Hayder Mahmood Salman
- Department of Computer Science, Al-Turath University College Al Mansour, Baghdad, Iraq.
| | - Maadh Fawzi Nassar
- Integrated Chemical Biophysics Research, Faculty of Science, University Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Department of Chemistry, Faculty of Science, University Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Liu X, Sun Y, Tang Y, Wang M, Xiao B. Woody and herbaceous wastes for the remediation of polluted waters of wetlands. CHEMOSPHERE 2023:139132. [PMID: 37285982 DOI: 10.1016/j.chemosphere.2023.139132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Plants wastes play an important role during water remediation in wetlands. Plant waste is made into biochar, which is usually used directly or as a water biofilter to remove pollutants. While, the water remediation effect of combination for biochar from woody and herbaceous wastes coupling with substrate types in CWs have not been fully explored. To explore the water remediation effect of combination for biochar coupling with substrate on pH, Turbidity, COD, NH4+-N, TN and TP, four plant configuration modes combining seven woody plants and eight herbaceous plants (Plants A, Plants B, Plants C, Plants D) were coupled with three substrate types (Substrate 1, Substrate 2, Substrate 3) as 12 experiment groups, using water detection methods and significant differences test (LSD) to analyze. Results showed: (1) Compared to Substrate 3, Substrate 1 and Substrate 2 removed significantly higher in pollutants concentration (p < 0.05); (2) NH4+-N final concentration in Plants C and Plants D were both significantly lower than Plants A and Plants B coupling with Substrate 1 and Substrate 2 (p < 0.05). The TN final concentration of Plants C was significantly lower than Plants A in Substrate 1 (p < 0.05), and Plants A's turbidity was significantly lower than Plants C and Plants D's in Substrate 2 (p < 0.05); (3) The pollutants removal of group A1, A2, B1, B2, C1, C2, D1 and D2 were significantly higher than other experiment groups (p < 0.05). Group A2, B2, C1 and D1 had the best water remediation effect and better stability of plant community. Findings in this study will be beneficial for remediating polluted water and building sustainable wetlands.
Collapse
Affiliation(s)
- Xiaodong Liu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Innovative and Design, City University of Macau, Macau, 999078 China.
| | - Yerong Sun
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yueting Tang
- Huizhou Engineering Vocational College, Huizhou, 516001, China
| | - Min Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Bing Xiao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
12
|
Liu J, Zhong K, Feng Y, Feng L. Efficient cobalt hydroxide nanosheets for enhanced electrochemical sensing of Hg (II) ion. CHEMOSPHERE 2023; 334:139015. [PMID: 37224973 DOI: 10.1016/j.chemosphere.2023.139015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
A sensitive electrochemical device was suggested via the modification of a simple graphite rod electrode (GRE) with cobalt hydroxide (Co(OH)2) nanosheets. After closed circuit process on the modified electrode, the anodic stripping voltammetry (ASV) technique was used for measuring of Hg(II). In optimal experimental conditions, the suggested assay depicted a linear response over a broad range in the range 0.25-30 μg L-1, with the lowest detection limit of 0.07 μg L-1. Besides good selectivity, the sensor also indicated excellent reproducibility with a relative standard deviation (RSD) value of 2.9%. Moreover, the Co(OH)2-GRE showed satisfactory sensing performance in real water samples with appropriate recovery values (96.0-102.5%). Additionally, possible interfering cations were examined, but no significant interference was found. By taking some merits such high sensitivity, remarkable selectivity and good precision, this strategy is expected to provide an efficient protocol for the electrochemical measuring of toxic Hg(II) in environmental matrices.
Collapse
Affiliation(s)
- Jiajun Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kunyu Zhong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yi Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Huang Z, Chen S, Ali HE, Elkamchouchi DH, Hu J, Ali E, Zhang J, Huang Y. Application of CNN and ANN in assessment the effect of chemical components of biological nanomaterials in treatment of infection of inner ear and environmental sustainability. CHEMOSPHERE 2023; 331:138458. [PMID: 36966931 DOI: 10.1016/j.chemosphere.2023.138458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 05/05/2023]
Abstract
Nanoparticles (NPs) are a promising alternative to antibiotics for targeting microorganisms, especially in the case of difficult-to-treat bacterial illnesses. Antibacterial coatings for medical equipment, materials for infection prevention and healing, bacterial detection systems for medical diagnostics, and antibacterial immunizations are potential applications of nanotechnology. Infections in the ear, which can result in hearing loss, are extremely difficult to cure. The use of nanoparticles to enhance the efficacy of antimicrobial medicines is a potential option. Various types of inorganic, lipid-based, and polymeric nanoparticles have been produced and shown beneficial for the controlled administration of medication. This article focuses on the use of polymeric nanoparticles to treat frequent bacterial diseases in the human body. Using machine learning models such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), this 28-day study evaluates the efficacy of nanoparticle therapy. An innovative application of advanced CNNs, such as Dense Net, for the automatic detection of middle ear infections is reported. Three thousand oto-endoscopic images (OEIs) were categorized as normal, chronic otitis media (COM), and otitis media with effusion (OME). Comparing middle ear effusions to OEIs, CNN models achieved a classification accuracy of 95%, indicating great promise for the automated identification of middle ear infections. The hybrid CNN-ANN model attained an overall accuracy of more than 0.90 percent, with a sensitivity of 95 percent and a specificity of 100 percent in distinguishing earwax from illness, and provided nearly perfect measures of 0.99 percent. Nanoparticles are a promising treatment for difficult-to-treat bacterial diseases, such as ear infections. The application of machine learning models, such as ANNs and CNNs, can improve the efficacy of nanoparticle therapy, especially for the automated detection of middle ear infections. Polymeric nanoparticles, in particular, have shown efficacy in treating common bacterial infections in children, indicating great promise for future treatments.
Collapse
Affiliation(s)
- Zhongguan Huang
- Department of Otolaryngology, Pingyang Hospital Affiliated to Wenzhou Medical University, Pingyang, Zhejiang, 325400, China
| | - Shuainan Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Dalia H Elkamchouchi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jun Hu
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Yideng Huang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|