1
|
Li J, Zuo X, Chen Q, Lin Y, Meng F. Genome-resolved metagenomic analysis reveals a novel denitrifier with truncated nitrite reduction pathway from the genus SC-I-84. WATER RESEARCH 2025; 282:123598. [PMID: 40245806 DOI: 10.1016/j.watres.2025.123598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Understanding the genomic and ecological traits of partial denitrification (PD) bacteria is of high importance for developing wastewater treatment technologies. In this study, a PD-based bioreactor was operated, resulting in a mixed culture dominated by a potentially novel PD functional bacterium (SC-I-84). Progressively increased activity in both nitrate reduction and nitrite production were observed in the SC-I-84 enrichment system, whereas the nitrite reduction activity was always negligible. The phylogenetic analysis indicated that SC-I-84 was closely related to an uncultured beta-proteobacterium (99 %), whereas its denitrification functional genes (napA, napB, narV, and narY) exhibited evidence of co-evolution with chromosomal genes from the genus Cupriavidus, order Burkholderiales. In the genetic sketch of SC-I-84, only nitrate-reduction genes (nar and nap) were identified, whereas nitrite-reduction genes (nir) were absent. Notably, nitrate reduction genes were adjacent to carbon metabolism genes (sucB/C, mdh, idh) and a high abundance of tricarboxylic acid (TCA) cycling genes were found. This can promote the utilization efficiency of electron donors by nitrate reduction genes in SC-I-84, thus enhancing the denitrification activity. Furthermore, SC-I-84 positively cooperated with some bacteria that participate in nitrogen and carbon metabolism and other PD bacteria, but negatively interacted with full-denitrification bacteria. These results indicate that the enrichment of SC-I-84 restricted the growth of full-denitrification bacteria, aiding in the maintenance of a stable PD process. Taken together, the meta-genomic analysis of the novel PD functional bacterium is expected to enhance our understanding of PD processes and aid in the development of PD-based wastewater treatment processes.
Collapse
Affiliation(s)
- Jiapeng Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaotian Zuo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qianqian Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yanting Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Xie C, Li X, Zhang Q, Zhang L, Cao X, Peng Y. Achieving advanced nitrogen removal with anammox and endogenous partial denitrification driven by efficient hydrolytic fermentation of slowly-biodegradable organic matter. BIORESOURCE TECHNOLOGY 2024; 414:131555. [PMID: 39362342 DOI: 10.1016/j.biortech.2024.131555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Anammox-based processes are pivotal for elevating nitrogen removal efficiency in municipal wastewater treatment. This study established a novel HF-EPDA system combined in-situ hydrolytic fermentation (HF) with endogenous partial denitrification (EPD) and anammox. Slowly-biodegradable organic matter (SBOM) was degraded and transformed into endogenous polymers for driving production of sufficient nitrite by EPD, further promoted the nitrogen removal via anammox process. Processes above formed positive feedback, guaranteeing the robustness and recoverability of system. After a 92-day suspension during operation, advanced nitrogen removal was still achieved with excellent nitrogen removal efficiency of 95.84 ± 1.73 %, treating with actual domestic wastewater and synthetic nitrate wastewater. Candidatus Brocadia and Candidatus Competibacter were dominant bacteria on biofilms responsible for the anammox and EPD process respectively, while the main hydrolytic fermentation organisms norank_o SBR1031 was enriched in floc sludge. This study highlights the reliable potential for expanding anammox application with simultaneous improvement of SBOM utilization.
Collapse
Affiliation(s)
- Chen Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | | | - Xiaoxin Cao
- Xinkai Environment Investment Co., Ltd., China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Zou X, Yao Y, Gao M, Zhang Y, Guo H, Liu Y. Treatment of high ammonia anaerobically digested molasses wastewater using aerobic granular sludge reactor. BIORESOURCE TECHNOLOGY 2024; 406:131056. [PMID: 38945503 DOI: 10.1016/j.biortech.2024.131056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
This study addressed the treatment of high ammonia, low biodegradable chemical oxygen demand (bCOD) anaerobically digested molasses wastewater, utilizing an aerobic granular sludge (AGS) reactor. The AGS achieved 99 % ammonia removal regardless of the bCOD supplementation. By adding low ammonia (<60 mg/L), high bCOD raw molasses wastewater (before anaerobic digestion) as a carbon source, enhanced nitrogen removal, increasing from 10 % to 97 %, and improved sludge settleability via bio-induced calcite precipitation were observed. Functional genes prediction suggested two potential denitrification pathways, including heterotrophic denitrification by Paracoccus and Thauera, and autotrophic denitrification, specifically sulfide-oxidizing autotrophic denitrification by Thiobacillus. An increase in the relative abundance of microorganisms involved in heterotrophic denitrification was observed with the addition of high bCOD raw molasses wastewater. Consequently, incorporating raw molasses wastewater into the AGS presents a sustainable approach to achieve mixotrophic denitrification, maintain stable granular sludge and ensure stable treatment performance when treating anaerobically digested molasses wastewater.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Wang L, Hao X, Jiang T, Li X, Yang J, Wang B. Feasibility of in-situ sludge fermentation coupled with partial denitrification: Key roles of initial organic matters and alkaline pH. BIORESOURCE TECHNOLOGY 2024; 401:130730. [PMID: 38657825 DOI: 10.1016/j.biortech.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Achieving partial denitrification (PD) by using fermentation products extracted from waste activated sludge (WAS) rather than commercial organic matters is a promising approach for providing nitrite for anammox, while sludge reduction could also be realized by WAS reutilization. This study proposed an In-situ Sludge Fermentation coupled with Partial Denitrification (ISFPD) system and explored its performance under different conditions, including initial pH, nitrate concentrations, and organic matters. Results showed that nitrite production increased with the elevation of initial pH (from 6 to 9), and the highest nitrate-to-nitrite transformation ratio (NTR) reached 77% at initial pH 9. The PD rates and NTR were observed to be minimally influenced by initial nitrate concentrations. Acetate was preferred by denitrifying bacteria, while macromolecules such as proteins necessitated be hydrolyzed to be suitable for further utilization. The insights gained through this study paved the way for efficient nitrite production and sustainable WAS reutilization in harmony.
Collapse
Affiliation(s)
- Lu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tan Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaodi Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiayi Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Su Q, Li X, Fan X, Cao S. Reactivation performance and sludge transformation after long-term storage of Partial denitrification/Anammox (PD/A) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169505. [PMID: 38128655 DOI: 10.1016/j.scitotenv.2023.169505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
This study explores the startup of innovative Partial denitrification/Anammox (PD/A) process using long-term stored sludge (>2 years at 4 °C). Results indicate a swift recovery performance, characterized by a progressive increase in the activity of functional microorganisms with improved nitrogen volumetric loading rate during operation. Stable nitrogen removal efficiency of 99.6 % was attained at 14.2 °C under influent nitrate and ammonium of 120 and 100 mg/L, respectively. A distinctive transformation was observed as the initially black seeding sludge transitioned to brownish-red, accompanied by rapid sludge granulation with size notably increased from 263.1 μm (day 4) to 1255.0 μm (day 128), significantly contributing to the rapid PD/A performance recovery. Microbial community analysis revealed substantial increases in functional bacteria, Thauera (0.09 %-10.4 %) and Candidatus Brocadia (0.003 %-1.98 %), coinciding with enhanced nitrogen removal performance. Overall, this study underscores the viability of long-term stored PD/A sludge as a seed for rapid reactor startup, offering useful technical support to advance practical PD/A process implementation.
Collapse
Affiliation(s)
- Qingliang Su
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoyan Fan
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Shenbin Cao
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, China.
| |
Collapse
|
6
|
Lan Y, Li X, Du R, Fan X, Cao S, Peng Y. Hydroxyapatite (HAP) formation in acetate-driven partial denitrification process: Enhancing sludge granulation and phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166659. [PMID: 37652380 DOI: 10.1016/j.scitotenv.2023.166659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Partial denitrification/anammox (PD/A) processes have emerged as a promising technology for efficient nitrogen removal from wastewater. However, these processes fail to remove phosphorus (P), a key pollutant that contributes to water eutrophication. To address this issue, the potential of inducing hydroxyapatite (HAP) precipitation in PD processes to achieve simultaneous P removal was investigated for the first time. Specifically, three SBRs (R1-R3) for PD were operated with adding varying concentrations of external Ca (30, 60, and 120 mg/L, respectively). Results demonstrated significant P reduction in all three SBRs, particularly in R3 with high Ca, which achieved an 80 % removal efficiency. Notably, sludge granulation was observed during operation, with the granule size in R3 with high Ca reaching 906.1 μm during the stable period, exceeding those in R2 (788.7 μm) and R1 (707.1 μm). This led to good settle ability of the PD sludge, as demonstrated by the lowest SVI5 (20 mL/g MLSS). Moreover, the decrease in the MLVSS/MLSS ratio suggested that the inorganic content accumulated, as observed by confocal laser scanning microscopy in the interior of the granules. Elemental composition analysis suggested that PD granules contained high P and Ca, while the X-ray diffraction (XRD) results confirmed the formation of HAP. Overall, this study demonstrated that PD-HAP coupled granular sludge process has potential as a robust and efficient method for nitrite production, as well as effective P removal and recovery, thereby advancing the application of anammox processes in wastewater treatment.
Collapse
Affiliation(s)
- Yu Lan
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China
| | - Xing Li
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoyan Fan
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Shenbin Cao
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
7
|
Su X, Zhu XR, Li J, Wu L, Li X, Zhang Q, Peng Y. Determination of partial denitrification kinetic model parameters based on batch tests and metagenomic sequencing. BIORESOURCE TECHNOLOGY 2023; 379:128977. [PMID: 36990333 DOI: 10.1016/j.biortech.2023.128977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
In this study, a model was developed to investigate the partial denitrification(PD) process. The heterotrophic biomass (XH) proportion in the sludge was determined to be 66.4% based on metagenomic sequencing. The kinetic parameters were first calibrated, then validated using the batch tests results. The results showed rapid decreases in the chemical oxygen demand (COD) and nitrate concentrations and gradual increases in the nitrite concentrations in the first four hours, then remained constant from 4 to 8 h. Anoxic reduction factor (ηNO3 and ηNO2) and half saturation constant (KS1 and KS2) were calibrated at 0.097, 0.13, 89.28 mg COD/L, and 102.29 mg COD/L, respectively. Whereas the simulation results demonstrated that the increase in carbon-to-nitrogen (C/N) ratios and the reduction in XH contributed to the increase in the nitrite transformation rate. This model provides potential strategies for optimizing the PD/A process.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Rong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Zeng Z, Wang Y, Zhu W, Xie T, Li L. Effect of COD/ NO3−-N ratio on nitrite accumulation and microbial behavior in glucose-driven partial denitrification system. Heliyon 2023; 9:e14920. [PMID: 37123922 PMCID: PMC10130780 DOI: 10.1016/j.heliyon.2023.e14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
COD/NO3 --N ratio was considered to be one of the key factors achieving effective nitrite accumulation during partial denitrification. In two parallel reactors incubated with glucose as carbon source at COD/NO3 --N of 3 and 5, respectively, the microbial community structure shift and the nitrite accumulation performance during long-term operation were investigated. The maximum nitrite accumulation ratios at COD/NO3 --N of 3 and 5 were 17.9% and 47.04%, respectively. Thauera was the dominant genus in both reactors on day 220 with the relative abundance of 18.67% and 64.01%, respectively. Batch experiments with different electron acceptors suggested that the distinction in nitrite accumulation at COD/NO3 --N of 3 and 5 might be caused by the differences in the abundance of Thauera.
Collapse
|