1
|
Ajam F, Khourshidi A, Rabieian M, Taghavijeloudar M. Per-and polyfluoroalkyl degradation in a hybrid dielectric barrier discharge plasma and electrooxidation system through involving more reactive species by air and water circulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137287. [PMID: 39854989 DOI: 10.1016/j.jhazmat.2025.137287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The presence of PFAS in water matrices has become a global environmental issue in the last half-century. Dielectric barrier discharge (DBD) and electrooxidation (EO) showed potential for PFAS degradation but have yet to find practical application due to relatively high energy consumption. In this study, a hybrid DBD-EO system for efficient degradation of PFAS was developed by involving more reactive oxygen, sulfate radicals (SO4•-) and nitrogen species (RONS). The results showed that using the hybrid DBD-EO system under optimal conditions (applied voltage = 6 kV and current density = 7.5 mA/cm2) could increase PFOA degradation efficiency from 65.0 % (DBD) and 62.5 % (EO) to 89.14 %. While the EE/O decreased from 67.0 kWh/m3 (DBD) and 47.82 kWh/m3 (EO) to 21.61 kWh/m3. In addition, the effect of operational parameters and water matrices revealed that the hybrid DBD-EO system had high potential for PFOA removal from water under various conditions. According to the EPR and DFT calculation results, integration of reactive species in EO (SO4•-, •OH, O2•-) and ONOOH) and DBD (•OH, O2•-, NO2•-, 1O2 and ONOOH) processes in the DBD-EO system led to efficient degradation of PFOA through a mechanism of decarboxylation/defluorination cycle. Our findings suggested the combination of DBD and EO is a promising approach for complete degradation of PFAS from water with low energy consumption and minimal environmental side effects.
Collapse
Affiliation(s)
- Fatemeh Ajam
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Amirhossein Khourshidi
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Masoud Rabieian
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744, South Korea.
| |
Collapse
|
2
|
Trzcinski AP, Harada KH. Comparison of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS) removal in a combined adsorption and electrochemical oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172184. [PMID: 38575007 DOI: 10.1016/j.scitotenv.2024.172184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
This study focused on three of the most studied PFAS molecules, namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS). They were compared in terms of their adsorption capacity onto graphite intercalated compound (GIC), a low surface area, highly conductive and cheap adsorbent. The adsorption on GIC followed a pseudo second order kinetics and the maximum adsorption capacity using Langmuir was 53.9 μg/g for PFOS, 22.3 μg/g for PFOA and 0.985 μg/g for PFBS due to electrostatic attraction and hydrophobic interactions. GIC was added into an electrochemical oxidation reactor and >100 μg/L PFOS was found to be fully degraded (<10 ng/L) leaving degradation by-products such as PFHpS, PFHxS, PFPeS, PFBS, PFOA, PFHxA and PFBA below 100 ng/L after 5 cycles of adsorption onto GIC for 20 min followed by regeneration at 28 mA/cm2 for 10 min. PFBS was completely removed due to degradation by aqueous electrons on GIC flakes. Up to 98 % PFOA was removed by the process after 3 cycles of adsorption onto GIC for 20 min followed by regeneration at 25 mA/cm2 for 10 min. When PFBS was spiked individually, only 17 % was removed due to poor adsorption on GIC. There was a drop of 3-40 % by treating PFOS, PFOA and smaller sulfonates in a real water matrix under the same electrochemical conditions (20 mA/cm2), but PFOS and PFOA removal percentage were 95 and 68 % after 20 min at 20 mA/cm2.
Collapse
Affiliation(s)
- Antoine P Trzcinski
- School of Agriculture and Environmental Science, University of Southern Queensland, West Street, 4350, Queensland, Australia.
| | - Kouji H Harada
- Department of health and environmental sciences, Graduate school of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Trzcinski AP, Harada K. Combined adsorption and electrochemical oxidation of perfluorooctanoic acid (PFOA) using graphite intercalated compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19946-19960. [PMID: 38367112 PMCID: PMC10927886 DOI: 10.1007/s11356-024-32449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a bioaccumulative synthetic chemical containing strong C-F bonds and is one of the most common per- and polyfluoroalkyl substances (PFAS) detected in the environment. Graphite intercalated compound (GIC) flakes were used to adsorb and degrade PFOA through electrochemical oxidation. The adsorption followed the Langmuir model with a loading capacity of 2.6 µg PFOA g-1 GIC and a second-order kinetics (3.354 g µg-1 min-1). 99.4% of PFOA was removed by the process with a half-life of 15 min. When PFOA molecules broke down, they released various by-products, such as short-chain perfluoro carboxylic acids like PFHpA, PFHxA, and PFBA. This breakdown indicates the cleavage of the perfluorocarbon chain and the release of CF2 units, suggesting a transformation or degradation of the original compound into these smaller acids. Shorter-chain perfluorinated compounds had slower degradation rates compared to longer-chain ones. Combining these two methods (adsorption and in situ electrochemical oxidation) was found to be advantageous because adsorption can initially concentrate the PFOA molecules, making it easier for the electrochemical process to target and degrade them. The electrochemical process can potentially break down or transform the PFAS compounds into less harmful substances through oxidation or other reactions.
Collapse
Affiliation(s)
- Antoine P Trzcinski
- School of Agriculture and Environmental Science, University of Southern Queensland, West Street, Queensland, 4350, Australia.
| | - Kouji Harada
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Sellaoui L, Dhaouadi F, Abdulaziz F, Alsehli AH, M Alsowayigh M, Dotto GL, da Boit Martinello K, Silva LFO, Rtimi S, Bonilla-Petriciolet A. Adsorption of perfluorooctanoic carboxylic and heptadecafluorooctane sulfonic acids via magnetic chitosan: isotherms and modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118410-118417. [PMID: 37910375 DOI: 10.1007/s11356-023-30600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
This paper evaluates the adsorption mechanism of perfluorooctanoic carboxylic acid (PFCA) and heptadecafluorooctane sulfonic acid (HFOSA) on magnetic chitosan for the first time via a statistical physics modeling. Magnetic chitosan (MC-CoFe2O4) was produced from shrimp wastes and used in standard batch adsorption systems to remove PFCA and HFOSA. The experimental isotherms indicated that the maximum adsorption capacities ranged from 14 to 27.12 mg/g and from 19.16 to 45.12 mg/g for PFCA and HFOSA, respectively, where an exothermic behavior was observed for both compounds. The adsorption data were studied via an advanced model hypothesizing that a multilayer process occurred for these adsorption systems. This theoretical approach indicated that the total number of formed layers of PFCA and HFOSA adsorbates is about 3 (Nt = 2.83) at high temperatures (328 K) where a molecular aggregation process was noted during the adsorption. The maximum saturation-multilayer adsorption of PFCA and HFOSA on magnetic chitosan was 30.77 and 50.26 mg/g, respectively, and the corresponding adsorption mechanisms were successfully investigated. Two energies were responsible for the formed adsorbate layer directly on the surface and the vertical layers were computed and interpreted, reflecting that physical interactions were involved to bind these molecules on the adsorbent surface at different temperatures where the calculated adsorption energies ranged from 14 to 31 kJ/mol. Overall, this work provides theoretical insights to understand the adsorption mechanism of PFCA and HFOSA using the statistical physics modeling and its results can be used to improve the adsorbent performance for engineering applications.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal 4054, Sousse, Tunisia.
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, Monastir University, LR18ES18, Monastir, Tunisia.
| | - Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, Monastir University, LR18ES18, Monastir, Tunisia
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
| | - Amal H Alsehli
- Chemistry Department, College of Science, Taibah University, 42353, Madinah, Saudi Arabia
| | - Marwah M Alsowayigh
- Chemistry Department, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Kátia da Boit Martinello
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Sami Rtimi
- Global Institute for Water, Environment, And Health (GIWEH), 1210, Geneva, Switzerland
| | | |
Collapse
|
5
|
Duan X, Ning Z, Wang W, Li Y, Zhao X, Liu L, Li W, Chang L. Y-mediated optimization of 3DG-PbO 2 anode for electrochemical degradation of PFOS. BMC Chem 2023; 17:146. [PMID: 37891592 PMCID: PMC10612263 DOI: 10.1186/s13065-023-01057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In our previous study, the three-dimensional graphene-modified PbO2 (3DG-PbO2) anode was prepared for the effective degradation of perfluorooctanesulfonat (PFOS) by the electrochemical oxidation process. However, the mineralization efficiency of PFOS at the 3DG-PbO2 anode still needs to be further improved due to the recalcitrance of PFOS. Thus, in this study, the yttrium (Y) was doped into the 3DG-PbO2 film to further improve the electrochemical activity of the PbO2 anode. To optimize the doping amount of Y, three Y and 3DG codoped PbO2 anodes were fabricated with different Y3+ concentrations of 5, 15, and 30 mM in the electroplating solution, which were named Y/3DG-PbO2-5, Y/3DG-PbO2-15 and Y/3DG-PbO2-30, respectively. The results of morphological, structural, and electrochemical characterization revealed that doping Y into the 3DG-PbO2 anode further refined the β-PbO2 crystals, increased the oxygen evolution overpotential and active sites, and reduced the electron transfer resistance, resulting in a superior electrocatalytic activity. Among all the prepared anodes, the Y/3DG-PbO2-15 anode exhibited the best activity for electrochemical oxidation of PFOS. After 120 min of electrolysis, the TOC removal efficiency was 80.89% with Y/3DG-PbO2-15 anode, greatly higher than 69.13% with 3DG-PbO2 anode. In addition, the effect of operating parameters on PFOS removal was analyzed by response surface, and the obtained optimum values of current density, initial PFOS concentration, pH, and Na2SO4 concentration were 50 mA/cm2, 12.21 mg/L, 5.39, and 0.01 M, respectively. Under the optimal conditions, the PFOS removal efficiency reached up to 97.16% after 40 min of electrolysis. The results of the present study confirmed that the Y/3DG-PbO2 was a promising anode for electrocatalytic oxidation of persistent organic pollutants.
Collapse
Affiliation(s)
- Xiaoyue Duan
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Ziqi Ning
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Weiyi Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yitong Li
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Liyue Liu
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Wenqian Li
- College of Engineering, Jilin Normal University, Siping, Jilin, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| |
Collapse
|