1
|
Ma J, Peng Q, Chen S, Liu Z, Zhang W, Zhang C, Du X, Sun S, Peng W, Lei Z, Zhang L, Su P, Zhang D, Liu Y. Microbiome Migration from Soil to Leaves in Maize and Rice. Microorganisms 2025; 13:947. [PMID: 40284783 PMCID: PMC12029745 DOI: 10.3390/microorganisms13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The interactions between plants and microbes are essential for enhancing crop productivity. However, the mechanisms underlying host-specific microbiome migration and functional assembly remain poorly understood. In this study, microbiome migration from soil to leaves in rice (Oryza sativa) and maize (Zea mays) was analyzed through 16S rRNA sequencing and phenotypic assessments. When we used the same soil microbiome source to grow rice and maize, microbiota and functional traits were specifically enriched by maize in its phyllosphere and rhizosphere. This indicated that plants can selectively assemble microbiomes from a shared microbiota source. Therefore, 22 strains were isolated from the phyllospheres of rice and maize and used to construct a synthetic microbial community (SynCom). When the soil for rice and maize growth was inoculated with the SynCom, strains belonging to Bacillus were enriched in the maize phyllosphere compared to the rice phyllosphere. Additionally, a strain belonging to Rhizobium was enriched in the maize rhizosphere compared to the rice rhizosphere. These results suggest that plant species influence the migration of microbiota within their respective compartments. Compared with mock inoculation, SynCom inoculation significantly enhanced plant growth. When we compared the microbiomes, strains belonging to Achromobacter, which were assembled by both rice and maize, played a role in enhancing plant growth. Our findings underscore the importance of microbial migration dynamics and functional assembly in leveraging plant-microbe interactions for sustainable agriculture.
Collapse
Affiliation(s)
- Jiejia Ma
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Qianze Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Silu Chen
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Zhuoxin Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weixing Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Chi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Xiaohua Du
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Shue Sun
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weiye Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Ziling Lei
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Limei Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Pin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| |
Collapse
|
2
|
Zhu N, Sun S, Guo X, Luo W, Zhuang Y, Lei T, Leng F, Chen J, Wang Y. Integration of physiology, genomics and microbiomics analyses reveal the biodegradation mechanism of petroleum hydrocarbons by Medicago sativa L. and growth-promoting bacterium Rhodococcus erythropolis KB1. BIORESOURCE TECHNOLOGY 2025; 415:131659. [PMID: 39426428 DOI: 10.1016/j.biortech.2024.131659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Despite the effectiveness of microbial-phytoremediation for remediating total petroleum hydrocarbons (TPH)-contaminated soil, the underlying mechanisms remain elusive. This study investigated the whole-genome and biological activity of Rhodococcus erythropolis KB1, revealing its plant growth promotion (PGP), TPH degradation, and stress resistance capabilities. Phytoremediation (using alfalfa) and plant-microbial remediation (using alfalfa and KB1) were employed to degrade TPH. The highest TPH degradation rate, reaching 95%, was observed with plant-microbial remediation. This is attributed to KB1's ability to promote alfalfa growth, induce the release of signaling molecules to activate plant antioxidant enzymes, actively recruit TPH-degrading bacteria (e.g., Sphingomonas, Pseudomonas, C1-B045), and increase soil nitrogen and phosphorus levels, thereby accelerating TPH degradation by both plants and microorganisms. This study demonstrates that R. erythropolis KB1 holds great potential for enhancing the remediation of TPH-contaminated soil through its multifaceted mechanisms, particularly in plant-microbial remediation strategies, providing valuable theoretical support for the application of this technology.
Collapse
Affiliation(s)
- Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shangchen Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Lanzhou Rescources and enviroment VOC-TECH University, Lanzhou 730050, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wen Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yan Zhuang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tianzhu Lei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
3
|
Korshunova T, Kuzina E, Mukhamatdyarova S, Iskuzhina M, Kulbaeva L, Petrova S. Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides. PLANTS (BASEL, SWITZERLAND) 2024; 13:3560. [PMID: 39771258 PMCID: PMC11678539 DOI: 10.3390/plants13243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria of the genera Pseudomonas and Acinetobacter, which exhibited a high degree of oil biodegradation (72-96%). All strains showed resistance to herbicides based on 2,4-D, imazethapyr and tribenuron-methyl, the ability to fix nitrogen, phosphate mobilization, and production of indole-3-acetic acid. The presence of pollutants affected the growth-stimulating properties of bacteria in different ways. The most promising strain P. citronellolis N2 was used alone and together with oat and lupine plants for soil remediation of oil, including herbicide-treated oil-contaminated soil. Combined contamination was more toxic to plants and soil microorganisms. Bacterization stimulated the formation of chlorophyll and suppressed the synthesis of abscisic acid and malonic dialdehyde in plant tissues. The combined use of bacteria and oat plants most effectively reduced the content of hydrocarbons in the soil (including in the presence of herbicides). The results obtained can be used to develop new methods for bioremediation of soils with polychemical pollution.
Collapse
Affiliation(s)
- Tatyana Korshunova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Elena Kuzina
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Svetlana Mukhamatdyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Milyausha Iskuzhina
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Liliya Kulbaeva
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Svetlana Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia;
| |
Collapse
|
4
|
Wang P, Chen C, Liao K, Tao Y, Fu Y, Chen L. Mechanism of A. oleivorans S4 treating soluble phosphorus deficiency and hydrocarbon contamination simultaneously. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175215. [PMID: 39098416 DOI: 10.1016/j.scitotenv.2024.175215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Both soluble phosphorus (P) deficiency and petroleum hydrocarbon contamination represent challenges in soil environments. While phosphate-solubilizing bacteria and hydrocarbon-degrading bacteria have been identified and employed in environmental bioremediation, the bacteria co-adapted to soluble P deficiency and hydrocarbon contamination has rarely been reported. This study explored the ability of Acinetobacter oleivorans S4 (A. oleivorans S4) to solubilize phosphate using n-hexadecane (H), glucose (G), and a mixed carbon source (HG) in tricalcium phosphate (TCP) medium. A. oleivorans S4 exhibited robust growth in H-TCP, releasing 31 mg L-1 of soluble P. Conversely, A. oleivorans S4 barely grew in G-TCP, releasing 654 mg L-1 of soluble P. In HG-TCP, biomass surpassed that in H-TCP, with phosphate release comparable to that in G-TCP. HPLC analysis revealed a small amount of TCA cycle acids in H-TCP and a large amount of gluconate in G-TCP and HG-TCP. Transcriptomic analysis showed elevated expression of genes associated with alkane degradation, P starvation, N utilization, and trehalose synthesis in H-TCP, revealing the molecular co-adaptation mechanism of A. oleivorans S4. Furthermore, the addition of glucose enhanced alkane degradation, P and N utilization, and reduced trehalose synthesis. It indicated that incomplete glucose metabolism may provide energy for other reactions, and the increase in soluble P mediated by gluconate may alleviate oxidative stress. Overall, A. oleivorans S4 proves promising for remediating soluble P-deficient and hydrocarbon-contaminated environments, and glucose stimulates its transformation into a super phosphate-solubilizing bacterium.
Collapse
Affiliation(s)
- Panpan Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Chaoqi Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China.
| | - Kejun Liao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Yue Tao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Yaojia Fu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
5
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
6
|
Ahmad J, Marsidi N, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N'I, Kurniawan SB. Integrating phytoremediation and mycoremediation with biosurfactant-producing fungi for hydrocarbon removal and the potential production of secondary resources. CHEMOSPHERE 2024; 349:140881. [PMID: 38048826 DOI: 10.1016/j.chemosphere.2023.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.
Collapse
Affiliation(s)
- Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, Třeboň, 379 81, Czech Republic.
| |
Collapse
|
7
|
Wang Y, Sun S, Liu Q, Su Y, Zhang H, Zhu M, Tang F, Gu Y, Zhao C. Characteristic microbiome and synergistic mechanism by engineering agent MAB-1 to evaluate oil-contaminated soil biodegradation in different layer soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10802-10817. [PMID: 38212565 DOI: 10.1007/s11356-024-31891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Bioremediation is a sustainable and pollution-free technology for crude oil-contaminated soil. However, most studies are limited to the remediation of shallow crude oil-contaminated soil, while ignoring the deeper soil. Here, a high-efficiency composite microbial agent MAB-1 was provided containing Bacillus (naphthalene and pyrene), Acinetobacter (cyclohexane), and Microbacterium (xylene) to be synergism degradation of crude oil components combined with other treatments. According to the crude oil degradation rate, the up-layer (63.64%), middle-layer (50.84%), and underlying-layer (54.21%) crude oil-contaminated soil are suitable for bioaugmentation (BA), biostimulation (BS), and biostimulation+bioventing (BS+BV), respectively. Combined with GC-MS and carbon number distribution analysis, under the optimal biotreatment, the degradation rates of 2-ring and 3-ring PAHs in layers soil were about 70% and 45%, respectively, and the medium and long-chain alkanes were reduced during the remediation. More importantly, the relative abundance of bacteria associated with crude oil degradation increased in each layer after the optimal treatment, such as Microbacterium (2.10-14%), Bacillus (2.56-12.1%), and Acinetobacter (0.95-12.15%) in the up-layer soil; Rhodococcus (1.5-6.9%) in the middle-layer soil; and Pseudomonas (3-5.4%) and Rhodococcus (1.3-13.2%) in the underlying-layer soil. Our evaluation results demonstrated that crude oil removal can be accelerated by adopting appropriate bioremediation approach for different depths of soil, providing a new perspective for the remediation of actual crude oil-contaminated sites.
Collapse
Affiliation(s)
- Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China.
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| |
Collapse
|
8
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
9
|
Sheck E, Romanov A, Shapovalova V, Shaidullina E, Martinovich A, Ivanchik N, Mikotina A, Skleenova E, Oloviannikov V, Azizov I, Vityazeva V, Lavrinenko A, Kozlov R, Edelstein M. Acinetobacter Non- baumannii Species: Occurrence in Infections in Hospitalized Patients, Identification, and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1301. [PMID: 37627721 PMCID: PMC10451542 DOI: 10.3390/antibiotics12081301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Acinetobacter species other than A. baumannii are becoming increasingly more important as opportunistic pathogens for humans. The primary aim of this study was to assess the prevalence, species distribution, antimicrobial resistance patterns, and carbapenemase gene content of clinical Acinetobacter non-baumannii (Anb) isolates that were collected as part of a sentinel surveillance program of bacterial infections in hospitalized patients. The secondary aim was to evaluate the performance of MALDI-TOF MS systems for the species-level identification of Anb isolates. METHODS Clinical bacterial isolates were collected from multiple sites across Russia and Kazakhstan in 2016-2022. Species identification was performed by means of MALDI-TOF MS, with the Autobio and Bruker systems used in parallel. The PCR detection of the species-specific blaOXA-51-like gene was used as a means of differentiating A. baumannii from Anb species, and the partial sequencing of the rpoB gene was used as a reference method for Anb species identification. The susceptibility of isolates to antibiotics (amikacin, cefepime, ciprofloxacin, colistin, gentamicin, imipenem, meropenem, sulbactam, tigecycline, tobramycin, and trimethoprim-sulfamethoxazole) was determined using the broth microdilution method. The presence of the most common in Acinetobacter-acquired carbapenemase genes (blaOXA-23-like, blaOXA-24/40-like, blaOXA-58-like, blaNDM, blaIMP, and blaVIM) was assessed using real-time PCR. RESULTS In total, 234 isolates were identified as belonging to 14 Anb species. These comprised 6.2% of Acinetobacter spp. and 0.7% of all bacterial isolates from the observations. Among the Anb species, the most abundant were A. pittii (42.7%), A. nosocomialis (13.7%), the A. calcoaceticus/oleivorans group (9.0%), A. bereziniae (7.7%), and A. geminorum (6.0%). Notably, two environmental species, A. oleivorans and A. courvalinii, were found for the first time in the clinical samples of patients with urinary tract infections. The prevalence of resistance to different antibiotics in Anb species varied from <4% (meropenem and colistin) to 11.2% (gentamicin). Most isolates were susceptible to all antibiotics; however, sporadic isolates of A. bereziniae, A. johnsonii, A. nosocomialis, A. oleivorans, A. pittii, and A. ursingii were resistant to carbapenems. A. bereziniae was more frequently resistant to sulbactam, aminoglycosides, trimethoprim-sulfamethoxazole, and tigecycline than the other species. Four (1.7%) isolates of A. bereziniae, A. johnsonii, A. pittii were found to carry carbapenemase genes (blaOXA-58-like and blaNDM, either alone or in combination). The overall accuracy rates of the species-level identification of Anb isolates with the Autobio and Bruker systems were 80.8% and 88.5%, with misidentifications occurring in 5 and 3 species, respectively. CONCLUSIONS This study provides important new insights into the methods of identification, occurrence, species distribution, and antibiotic resistance traits of clinical Anb isolates.
Collapse
Affiliation(s)
- Eugene Sheck
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Andrey Romanov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Valeria Shapovalova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elvira Shaidullina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Alexey Martinovich
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Natali Ivanchik
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Anna Mikotina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elena Skleenova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vladimir Oloviannikov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Ilya Azizov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vera Vityazeva
- Republican Children’s Hospital, 185000 Petrozavodsk, Republic of Karelia, Russia
| | - Alyona Lavrinenko
- Shared Resource Laboratory, Karaganda Medical University, 100008 Karaganda, Kazakhstan
| | - Roman Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Mikhail Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| |
Collapse
|