1
|
Zhou J, Chang Y, Li W, Li M, Yang D, Yang L, Jiang B, Yan W, Xu H, Xu X. Turning waste into resource: Metal framework-scale composite cathode overcomes limitations of low efficiency and cathode failure in electrochemical water softening. WATER RESEARCH 2025; 281:123549. [PMID: 40174561 DOI: 10.1016/j.watres.2025.123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Despite years of development, electrochemical water softening continues to face challenges in achieving high softening efficiency and maintaining long-term cathode stability. To address these issues, this study builds upon the characteristics of membrane-free electrochemical water softening and prior research by employing a large-pore stainless steel filter as the cathode. During extended operation, a fluffy, porous scale layer gradually forms on the cathode surface, transforming the stainless-steel filter into a metal framework-scale composite (MF-S) cathode. This composite cathode enhances OH⁻ enrichment and extraction, improving water softening efficiency. Additionally, the soft scale deposited on the cathode's pores and surface can be partially removed through simple backflushing, extending system's operational lifespan. Experimental results indicate that using a stainless-steel cathode with 15×10 mm pore size, the effluent pH exceeds 11.0 after 18 h of operation, with a Ca2+ hardness removal rate of over 97 %. To prevent clogging of the cathode pores during extended operation, backflushing is conducted every 25 h to remove scale. Remarkably, after 700 h of continuous operation, there is no observed decline in hardness removal efficiency, and the cathode remains functional, allowing the water softening process to continue. Electrochemical tests and finite element simulations reveal that the composite cathode significantly outperforms the stainless-steel filter cathode in generating and enriching OH⁻. The proposed composite cathode demonstrates strong practical potential, offering a new perspective for applying membrane-free, high-efficiency electrochemical water softening processes.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuexin Chang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Weijia Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China.
| | - Xing Xu
- Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China
| |
Collapse
|
2
|
Li Y, Zhang J, Zeng H, Zhang H. Ion association behaviors in the initial stage of calcium carbonate formation: An ab initio study. J Chem Phys 2024; 161:014503. [PMID: 38949280 DOI: 10.1063/5.0206841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
In this work, we performed static density functional theory calculations and ab initio metadynamics simulations to systematically investigate the association mechanisms and dynamic structures of four kinds of ion pairs that could be formed before the nucleation of CaCO3. For Ca2+-HCO3- and Ca2+-CO32- pairs, the arrangement of ligands around Ca2+ evolves between the six-coordinated octahedral structure and the seven-coordinated pentagonal bipyramidal structure. The formation of ion pairs follows an associative ligand substitution mechanism. Compared with HCO3-, CO32- exhibits a stronger affinity to Ca2+, leading to the formation of a more stable precursor phase in the prenucleation stage, which promotes the subsequent CaCO3 nucleation. In alkaline environments, excessive OH- ions decrease the coordination preference of Ca2+. In this case, the formation of Ca(OH)+-CO32- and Ca(OH)2-CO32- pairs favors the dissociative ligand substitution mechanism. The inhibiting effects of OH- ion on the CaCO3 association can be interpreted from two aspects, i.e., (1) OH- neutralizes positive charges on Ca2+, decreases the electrostatic interactions between Ca2+ and CO32-, and thus hinders the formation of the CaCO3 monomer, and (2) OH- decreases the capacity of Ca2+ for accommodating O, making it easier to separate Ca2+ and CO32- ions. Our findings on the ion association behaviors in the initial stage of CaCO3 formation not only help scientists evaluate the impact of ocean acidification on biomineralization but also provide theoretical support for the discovery and development of more effective approaches to manage undesirable scaling issues.
Collapse
Affiliation(s)
- Yue Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Zhou J, Chang Y, Yang D, Yang L, Jiang B, Yan W, Xu H, Xu X. A novel membrane-free electrochemical separation-filtering crystallization coupling process for treating circulating cooling water. WATER RESEARCH 2024; 256:121617. [PMID: 38642535 DOI: 10.1016/j.watres.2024.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The traditional electrochemical descaling process exhibits drawbacks, including low OH- utilization efficiency, constrained cathode deposition area, and protracted homogeneous precipitation time. Consequently, this study introduces a novel membrane-free electrochemical separation-filtering crystallization (MFES-FC) coupling process to treat circulating cooling water (CCW). In the membrane-free electrochemical separation (MFES) system, OH- is rapidly extracted by pump suction from the porous cathode boundary layer solution, preventing neutralization with H+, thereby enhancing the removal of Ca2+ and Mg2+. Experimental results indicate that the pH of the pump suction water can swiftly increase from 8.13 to 11.42 within 10 min. Owing to the high supersaturation of the pump suction water, this study couples the MFES with a filtration crystallization (FC) system that employs activated carbon as the medium. This approach captures scale particles to enhance water quality and expedites the homogeneous precipitation of hardness ions, shortening the treatment time while further augmenting the removal rate. After the MFES-FC treatment, the single-pass removal rates for total hardness, Ca2+ hardness, Mg2+ hardness, and alkalinity in the effluent reached 92 %, 97 %, 64 %, and 67 %, respectively, with turbidity of 3 NTU, current efficiency of 86.6 %, and energy consumption of 7.19 kWh·kg-1 CaCO3. This coupling process facilitates an effective removal of hardness and alkalinity at a comparatively low cost, offering a new reference and inspiration for advancements in electrochemical descaling technology.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuexin Chang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China.
| | - Xing Xu
- Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China
| |
Collapse
|
4
|
Jiang B, Ren X, Liu Q, Yue X, Yang Q, Liu Y, Xu H, Zhou J. Electrochemical water softening technology: From fundamental research to practical application. WATER RESEARCH 2024; 250:121077. [PMID: 38183800 DOI: 10.1016/j.watres.2023.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
In recent decades, the environmentally benign electrochemical softening process has been gaining widespread interest as an emerging alternative for water softening. But, in spite of decades of research, the fundamental advances in laboratory involving electrolytic cell design and treatment system development have not led to urgently needed improvements in industrially practicable electrochemical softening technique. In this review, we firstly provide the critical insights into the mechanism of the currently widely used cathode precipitation process and its inherent limitations, which seriously impede its wide implementation in industry. To relieve the above limitations, some cutting-edge electrochemically homogeneous crystallization systems have been developed, the effectiveness of which are also comprehensively summarized. In addition, the pros and cons between cathode precipitation and electrochemically homogeneous crystallization systems are systematically outlined in terms of performance and economic evaluation, potential application area, and electrolytic cell and system complexity. Finally, we discourse upon practical challenges impeding the industrial-scale deployment of electrochemical water softening technique and highlight the integration of strong engineering sense with fundamental research to realize industry-scale deployment. This review will inspire the researchers and engineers to break the bottlenecks in electrochemical water softening technology and harness this technology with the broadened industrial application area.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuanzhen Ren
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Qiannan Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xiao Yue
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Jie Zhou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| |
Collapse
|